{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Basic usage\n", "In this tutorial, we illustrate the basic usage of the toolbox to simulate MEG/EEG. We show how to simulate data with \"ground truth\" effects and, then test whether a decoding analysis can successfully detect those effects. This guides new users through the typical workflow: defining an experimental design, specifying when each effect should be present in time, generating data, and finally verifying that a chosen analysis pipeline can uncover the artificially injected effects.\n", "\n", "Below, we walk through a minimal but representative example of a 2x2 experimental design" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Defining an Experimental Design\n", "\n", "Imagine we have a simple 2x2 experimental design, in which we present trials of 2 different categories (say faces and objects) displayed in two different attention condition (attended vs. unattended condition). In each attention condition, we present 40 faces and 40 objects, resulting in a total of 160 trials. Our design matrix has 160 rows (1 per trial) and 2 columns: \n", "\n", "| Category | Attention |\n", "| -------- | ------- |\n", "| face | attended |\n", "| face | unattended |\n", "| object| attended |\n", "| object| unattended |\n", "| ...| ... |\n", "\n", "In this design matrix, we encode each condition as 1 and -1 (face: 1, object: -1, attended: 1, unattended: -1). The toolbox requires the design matrix to be a pandas data frame" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "\n", "# Creating the design matrix of our 2 by two balanced design:\n", "X = np.array([[1, 1, -1, -1] * 40, [1, -1] * 80]).T\n", "\n", "# Add descriptors:\n", "cond_names = [\"category\", \"attention\"]\n", "X = pd.DataFrame(X, columns=cond_names) # Add a column for the interaction between category and attention\n", "mapping = {\n", " \"category\": {1: \"face\", -1: \"object\"},\n", " \"attention\": {1: \"attended\", -1: \"unattended\"},\n", "}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Specifying multivariate effects in the data\n", "To specify an effect, we need to create a dictionary that specifies:\n", "- condition: the name of the experimental condition it corresponds to (matching the column name of your design matrix)\n", "- The time window at which it is present\n", "- The size of the effect\n", "\n", "Below, we specify a multivariate effect of category from 0.1 to 0.2s and an effect of attention from 0.3 to 0.5s, each with an effect size of 0.5" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "category_effect = {\n", " \"condition\": 'category',\n", " \"windows\": [0.1, 0.2],\n", " \"effect_size\": 0.5\n", "}\n", "\n", "attention_effect = {\n", " \"condition\": 'attention',\n", " \"windows\": [0.3, 0.4],\n", " \"effect_size\": 0.5\n", "}\n", "\n", "effects = [category_effect, attention_effect] # Packaging them in a list to pass to the simulator class" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3. Specifying the characteristics of the data\n", "NExt, we need to specify the characteristics of the data:\n", "- n_channels: the number of channels of the MEG/EEG recordings we plan to analyze\n", "- sfreq: the sampling frequency of our signal\n", "- n_subjects: the number of subjects for our virtual data set\n", "- s: observation noise\n", "- ch_cov: the spatial covariance of the data we want to simulate\n", "\n", "The aim of this toolbox is to simulate data with known ground truth effect to validate your analysis pipelines capacity to detect effects in your real data. It is important to specify parameters that match your actual data to make sure that the results you obtain on simulated data will generalize to your real data: same number of channels, same number of subjects. We also strongly recommend that the observation noise and spatial covariance matches your actual data.\n", "\n", "For illustrations' sake, let's say we are working with an EEG system recording **32 channels** and that we collected **20 participants**. We specify an identity covariance matrix and set the observation noise to 0.5." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "n_channels = 32 # EEG system with 32 electrodes\n", "n_subjects = 20 # Recording from 20 subjects\n", "noise_std = 1 / 2 # Variance of the data\n", "ch_cov = None # Assuming that the data of each sensor are independent\n", "sfreq = 50 # Simulating data at 50Hz" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 4. Simulating the data\n", "We can simulate the data by passing all the parameters we have specified to teh simulator function. We also show how to convert the data to MNE format to make use of their decoding pipelines. We also show how to export to EEG lab is this is your preferred toolbox." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Subjects : 20\n", "Epochs : 160\n", "Samples : 61\n", "Channels : 32\n", "Conditions: 2 (category, attention)\n" ] } ], "source": [ "from multisim import Simulator\n", "\n", "sims = Simulator(\n", " X, # Design matrix\n", " effects, # effects to simulate\n", " noise_std, # Observation noise\n", " n_channels, # Number of channelss\n", " n_subjects, # Number of subjects\n", " -0.25,\n", " 1.0, # Start and end of epochs\n", " sfreq, # Sampling frequency of the data\n", " ch_cov=ch_cov, # Spatial covariance of the data\n", ")\n", "print(sims.summary())\n", "\n", "# Convert to MNE epochs:\n", "epochs = sims.export_to_mne(X=X.copy(), mapping=mapping)\n", "\n", "# Alternatively, save to eeglab format\n", "sims.export_to_eeglab(\n", " X=X.copy(),\n", " mapping=mapping,\n", " root=\"./data\",\n", " fname_template=\"sub-{:02d}_task-sim-epo.set\",\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 5. Vizualizing the data:\n", "We can have a quick look at our simulated data. It won't look like much, given that we have simulated multivariate effects without much else at all. It won't look like actual MEG/EEG data:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Not setting metadata\n", "160 matching events found\n", "No baseline correction applied\n", "0 projection items activated\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\alexander.lepauvre\\AppData\\Local\\Temp\\ipykernel_2964\\482823938.py:1: RuntimeWarning: Only one channel in group \"CH000\"; cannot combine by method \"mean\".\n", " epochs[0].plot_image(picks=[0], combine=\"mean\", scalings=dict(eeg=1))\n", "C:\\Users\\alexander.lepauvre\\AppData\\Local\\Temp\\ipykernel_2964\\482823938.py:1: RuntimeWarning: Only 1 channel in \"picks\"; cannot combine by method \"mean\".\n", " epochs[0].plot_image(picks=[0], combine=\"mean\", scalings=dict(eeg=1))\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "combining channels using \"mean\"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAooAAAHrCAYAAABINLzuAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsXQV4VNfzvStxdzeS4O7uDoW2tKUKhbrQ0lL/191LqVGlrlSB4lLcobgkJCRA3D1r/+8+fqFJ2HM2pNBCes/3bVMyO5vdfe/dN3dmzhmdzWazCQUFBQUFBQUFBYV60Nf/hYKCgoKCgoKCgoKEChQVFBQUFBQUFBTsQgWKCgoKCgoKCgoKdqECRQUFBQUFBQUFBbtQgaKCgoKCgoKCgoJdqEBRQUFBQUFBQUHBLlSgqKCgoKCgoKCgYBcqUFRQUFBQUFBQULALFSgqKCgoKCgoKCjYhQoUFRQUFBqJ0aNHi5tuukk0Bezbt08YjUaxZ8+ef/utKCgonEdQgaKCgsJZQXJysrjllltEs2bNhKurq/D29hZ9+vQRb775pqioqDj1vNjYWDF27Fi7r7Fq1Sqh0+nE3Llz6/y+qqpKPPjggyI8PFy4ubmJHj16iKVLl9p9jfXr14u+ffsKd3d3ERoaKu666y5RWlp62vPO5DXtYd26dWLJkiXaazQFtG7dWowZM0Y8/vjj//ZbUVA4b7F9+3ZtjXr00Ufhcw4fPqw959577xVNASpQVFBQ+NtYsGCBaNeunfj+++/FRRddJN566y3xwgsviOjoaHH//feLu++++2+9/vXXXy9ef/11cc0112iBp8Fg0LJ5a9eurfO8nTt3iiFDhojy8nLt+TfeeKP44IMPxOWXX97o10R45ZVXtL+VkJAgmgpuvfVW8fPPP2tBv4KCwuno3LmzaNmypfjmm2/gc77++mvt57XXXiuaBGwKCgoKfwNHjhyxeXp62lq2bGk7ceLEafbDhw/bZs6ceerfMTExtjFjxth9rZUrV9rksvTDDz+c+t2mTZu0373yyiunfldRUWGLj4+39erVq47/qFGjbGFhYbaioqJTv/vwww81/8WLFzfqNe0hKyvLZjQabR999JGtKaG6utrm5+dne+yxx/7tt6KgcN7imWee0daPDRs22LW3aNFCWw+bClRGUUFB4W/h5Zdf1kq7H3/8sQgLCzvNLjNufyejKMvQMtt38803n/qdLG3fcMMNYsOGDSI9PV37XXFxsVY6lrt4WfauwaRJk4Snp6eW7TzT12QZVLPZLIYOHVrn959++qlWcpJZSVnyDgoKEr6+vlpJvrq6WhQWFmrvx8/PT3s88MADcrNe5zWsVquYOXOmaNOmjfaeQkJCNP+CgoI6z/v111+1UrEsnbu4uIj4+HjxzDPPCIvFUud5AwcOFG3bttV6EAcNGqSV5CMiIrTjVh9OTk7a8+VrKyj8FyErDbI9pj6efPJJ7dqWkFWI2pnD2ti2bZs4ePDgqec0BahAUUFB4W9h3rx5Wl9i7969G+xjMplEbm7uaY+ioqLTnrtjxw7RvHnzOsGfRPfu3U+VmyV2796tBW9du3at8zxnZ2fRsWNH7XXO9DURZB9kQECAiImJsWufNm2a1qf01FNPiXHjxmnl78cee0wry8tA7vnnn9f6KGX5+osvvqjjK4NCWa6v6e+cMmWK+Oqrr8SIESO07612UCoDYNkHJZ/XpUsXrb/woYceOu39yCBz5MiRokOHDuK1117TSmeyt3LhwoWnPVe+jiS0yMBbQUHhdMTFxWnrndx81t+Y1QSPV199tWgy+LdTmgoKChcuZIlXLiPjx49vsI8sPUsf9qhdem7Tpo1t8ODBp73O3r17tefOnj1b+7f0kf9evXr1ac+9/PLLbaGhoWf8mgh9+/a1denS5bTfz5kzR/MfMWKEzWq1nvq9LGfrdDrbrbfeeup3ZrPZFhkZaRswYMCp361Zs0bz/+qrr+q87qJFi077fXl5+Wl//5ZbbrG5u7vbKisrT/1Ovr70/fzzz0/9rqqqSvs+JkyYcNprfP3119rzZXleQeG/hsmTJ2trVH088cQT2nVRg3feeee0lhaLxWKLiIhoUPvKhQSVUVRQUGg0arJOXl5eZ+RXwzCu/3j11VdPe65kTMvSan3IsmyNvfZP9NzazOuGviZCXl6eVjpGkCXsmjJVzeeVJWb5+xrI0rfMfh45cuTU73744Qfh4+Mjhg0bVifTKrN8Mnu4cuXKU8+VTO0alJSUaM/r16+fRuQ5cOBAnfcjfWs31sssq8ye1v7bNaj5XPL1FBQU7GPixIlaq0bt8vMff/whjh8/3qTKzhLGf/sNKCgoXLioKd3KQOVMEBgYeFp/n4TU8asPGRBJKZv6qKysPGWv/RM9t3Zg1dDXZKjfW1gbku1dGzL4k4iKijrt97V7D2W5Wpbfg4OD7b5udnb2qf/fu3evJtGxYsWK08rE9Uv4kZGRdQLXmoBw165d8HPVf76CgsJfkK0nsh1EqgTMnj1b22TKoFGuYVdccYVoSlCBooKCwt8KFCWZ4lyKNEuCjNyl10dGRob2U/79mufV/n3959Y870xek90k6pNLakNmCxv6+9oBpySyyCBR9iTagyTHSEhSzIABA7Tv/+mnn9aILPJGJTXeZO+hfJ2GvB97wW7N55LBvIKCAr5WZJZ+/vz52kP2Iv/4449i+PDhp67TpgIVKCooKPwtSPFsSdaQbOFevXqd9deXRBRZcpVZs9rkk02bNp2yS0hmr9zNb926tc6OXrKNJTml9u8a+poIkgwibwpnGzLgW7ZsmUZkYVlNKUwuy98//fST6N+//6nfp6Sk/O33IF9Dr9drZB8Fhf8i7FVIsrKyTvudDA5l243MJMoytNxkNbWys4TqUVRQUPhbkBIvHh4emri1vcVUijdLVm5jcdlll2nMQhmM1kCWjefMmaP1/tWUc2UZV5azv/zyyzoLvWQVS/me2qLbDX1NBBkQy5uCvR6/vwMZzMr3JWVu6kMyumUmsXaGsHaWQwbE77777t9+D1LeQ0rz1JTLFRT+a8jPzxd//vlnnbXh999/P+2ak5u5Sy65RLO999572jo4fvx40dSgMooKCgp/Owsmd9SyubtVq1aaTqDM7snARcrISIKG1CZrLGTgJoO8hx9+WOvRk7qMn332mUhNTdW0G2vjueee02QrZFlWaiQeO3ZMk4OR5SApD9OY17QHqV8os5cy+1dbi/HvQr5vKY8jp9rILKh83zJTIXsX5fcoA24Z5MrPKHsMJ0+erOk1yn5CGRCzvsmGQMrvyIb822+//ax9JgWFCw2S6CalrO68806tpUNuPmv6gOUm7rbbbjtVXpbl588//1wsXrxYyybKYLHJ4d+mXSsoKDQNHDp0yHbTTTfZYmNjbc7OzjYvLy9bnz59bG+99VYduZYzncxSMzXlvvvu0yRdXFxcbN26ddMkY+xBSsz07t3b5urqagsKCrLdcccdtuLi4tOedyavaQ/jxo2zDRkyxK48zpYtW+xKa+Tk5JwmxeHh4XHaa3/wwQea/I6bm5v2PbZr1872wAMP1Jl8s27dOlvPnj2154SHh2t2KdUh/478HmvL40g5oIbIgCxcuFDzl9N0FBT+i6i5Lt577z1typObm5vtsssus+3atcsWFRWl2TIzM+vIXMnnyevm999/tzVF6OR//u1gVUFBQeFCw5o1a7QpJlKKJjExUTQFXHzxxVp2UjI5FRT+i5DVD9kDLKsLCiehehQVFBQUGgGpWShLw/ZG4V2I2L9/v8betNcfqaCg8N+F6lFUUFBQaCTsjcC7UCH7SyVhRkFBQaE2VEZRQUFBQUFBQUHBLlSgaAerV6/WGE9SdFf26/zyyy92yzRSQ0lKSEiWU7du3URaWlqdCQ933HGHJswrx2dNmDDBrnSIgoKCgoKCwvmBTz/9VPUn1oMKFO2grKxMdOjQQbzzzjt27VIXrm/fvprormx6lWOwHnvssVNzYiXuueceMW/ePE3SQspNnDhxQlx66aX/4KdQUFBQUFBQUPh7UKxnB6hhAEo2YA2uvPJKTdtM6pbZg5yzKjWWpLac1DyTkMxI2QMkp1f07NnzH3v/CgoKCgoKCgqNhSKznCHkDNUFCxZo0yjkQPAdO3aIuLg4Tbi3JpiUkw2kcK2cElEDmX2Mjo6GgaJUfpeP2n9HqsPL0rUMVhUUFBQUFBTqQua65CQm2SomR0+ebVRWVmrDAxoKZ2fnOtXFpgAVKJ4h5BQHOQ7sxRdfFM8++6x46aWXxKJFi7SyspwdKycrZGZmaieLr69vHd+QkBDNZg9yEsNTTz31D30KBQUFBQWFpoP09HQRGRl51oPEADdPUS4sDfYJDQ3V5qU3pWBRBYpnCJnpk5DzHGUfokTHjh21UWWzZ8/WAsXGQGYk77333jrla5mBPPjOg8LLzcWuj9Oga+HrlTp50b/nfWwrtO32akd9W5MRsNa131Pfgp54YLrbz69SX4/xN0Fbpas/9S2uwhd6kJNJ7Nq9RwwdNVYsWzhftG/Xto7dZMAXvNHG5URSS0+eL/bg58IvP9+9J2eL2sO+mL+y1Xbt2aXQ1iu67gamPtKL/sps20OP1AXQVtB5AvUNsBRAW5lrAPUtqMTHMGI//q4kbF3HQVuVhXffFJBzJ7LyBPVdUeYHbb0j+TX6+rq/yHH1MbrlyfFhCN4v3gFt+iffp77h6z+FNufOQ6hvigufkX20qBLaftuVQX0v7hAObQdz8fkucaPLIWx0lIUym6Dpex1fKye0xOvS3fPIexJCjG0XBm39o72pr+fxHdBmzj5GfXWtekNbgZGvs/5V9hMhEqk6fs7GGCugbX+F/XugRFlpiRjVva3w8uLXU2MgM4nlwiImiQjh3ABKR7Wwis8zj2t+KlD8DyMwMFCb8dq6des6v5f9h2vXrj21o5AnSmFhYZ2somQ9SxuaLSkf9eFcWSlcdPZvZGvKPOH77Lf6Dfo5PK78KyitD2MhPy3yjU7Qpht0C/X1dsIXW8lVT1JffIsRIqF0P/XV+bfBr2sTosrlZPQrf1a61Q1YgtwM0Pe19en0787oiRf7cit+XQmvzoOgrbKQL0LhQc7QFurPbzItk76h9q8j8dD7yWb+fZgDmkHbY0uPU99mwfh8z7b2or4Xl+Nzumf1AeorgjpAU4Uv2TUJIbrjfYLQG3hLybM+e7BvMA/YcltEQ5sh0I/7Lt0IbVtaTaK+V0XgG7qEmye+mbePCqa+Uc54A+N53UTqe3zpcmhrU8kDthO+raDtxgoedFV5403Z+1d3p74bjp2cLWwPejc+T9itAF9LLzn3p773hOBz54u1R6nvo11wMLg7lVwMQoh2sW7Q1qtoH7QVV5dpP89li5abziCcdY4DRYNNJ0QTZH0o1vMZQpaUpRTOwYMH6/z+0KFDIiYmRvv/Ll26aGSX5cv/Wpzk86V8Tq9e/IamoKCgoKCgcP5ArxPC0ICHfF5ThMoo2oHsQUxKSjr1b9lvsHPnTuHv76+Vg++//34xceJE0b9/fzFo0CCtR1FK4UipHAmprXjDDTdopWTp4+3tLaZNm6YFiWfKeE4eNl14eNnPAFUV4VS916U8szf8s7qBbm3Mua4T9f1kK96tXtsJl4ckAnT4PQc48x1ngQ5nlEw7/qS+we1xFsXm5CpOWItOvgdrkQix5Nexz9mF39d9Ttvo300tHQNt0Zs/ob6lg6ZCm0tpOfUdQEpTZgc73rsKulD7631x1sBazJu+bS74GA5pyTNK/Ra/BG1Pxkyhvt08T2Yd7OG4HmcMNZDvy9nI7wwGYq98cwb11Q/GWUN95mHqm3w1HsPnVMBbC3bfaV8WTCLRz536mp15pit++w/Qpus4nPrqS3HbQvNL2lPfyd/j9WHxpObUN5BUFPQFJ9cNhKVHCqGtewQvlbKOiABXXo3Qdx0Lbfct/oj65lTeDW2PdubH32bEGeXrAnn2dWE2rr70i+8LbWXFOPN6tmDQ6bSHw+eJphkpKnkcO5ABnwwA62Py5MmaGKfEJ598ohFQjh07Jlq0aKERUWTfYu0m2BkzZohvvvlGYzNLhvS7774LS8/1UVxcrAWcC3ceER6g96K7n4UGPwyG/X9gY0RL6pvyzCPQFjV6IPXV978K245spr77Q3DvTEsXHAhIWN1wibDcohPH0tPFm2+8Lu6+514RGVW3z8qH9HO+ns0D47sN26HtbRsPyG7pgl/b0c71u7050DYygfcC+rjwQsPa9BLRWAxyz4O2lw7ym98DuAIoqnx5b9yqVHxDbx+Cg1eJUIFvRKXOvN+zwow3GelFPKhutwn3EhrG3E59j5XjEyR4wSvU96OE66HtLu9k6psb04fag/JJCTEYt4dIeGfthjaLNw4yJHSWhrNW62NFEQ7oBobjFg+JgyX6RgWgEm7fPwdtt7tyTd5Xx+GLpcLEN+QGsrhE2HCwLrEkB38fg/d/SX0LBt8Kbe7kuyiuqBKx97yh9fXLpMzZRM19+F6nWOHSgNJzlc0qXjelnpP38m9CZRTtYODAgRrlnmHq1KnaA0E2skrBbiTarXB+QQaHr7zO+zoVFBQUFP57MPyvtOzweaJpQmUUz1PU7GS2J6ULL1B6riA1xMJKzNSTCPbAO7/4TNzM7gg6H85sO+6VCG0he+dR34w2uJxSYeKnsTO5yoPcjaK8vFwcOnRQNG/eQri71y2v7BoxDPp2/5WzvPMNOJO5KhWXpSQ6heFMRuze08dK1saJ9pdAm+053pYQM+0kmx+C7Kyr92zgroMnQ9vRUn4MN6Tj78tk5b4R3jjDPjSIS1/YnHGTvb4EZ24lqkmmM6+C/92ccnwNtw7kFYPjJdg3OmkJ9bV0wu0Si5L5OTts5wfU7hSNy7z6BJ5h31YdCG3dbCnUd69LArRFzXuR+nqNvBLaCvzw60p4EvJeUgHPcnq8chu0Rd+IFSAkev2Aj//awTirLzHXqx+0dQ3nWTJ38nkj8jE5S8JGSrvrdfHQVlZSIkZ1bHZOM4oPucQ1OKP4YlWKyigq/LNwn/OEcHe1H9RF9SVlno4j6Ot+fwSX4oIScT+IRG4FloTxduZ7qmBW1rQ60Kp6CUt+hD4+m7q6b54LbVU9LteCxAF9+4g/1q4THTvW7dF0+wYHsDvLeIDSKW81tLUNxaV0CdYSo2/Dj5GbEX/PRQ/x76rAQUmMVFOF9U/e//RoKe6te785l0d55E8cKNzaL476DnLFc9ZzDZiJLeFnxtIr+R4R1Nd3I+7Jq2z717Qne2hvwEFo3qy3qO93XadB2/Rc3t/oEo3n3Eb78NYZ6yUPULvhyHpo0/2PvYrQ+dhOaEtpPpL6HsjA7RKtR11NfTdZcAtIeDUv4/pU4mMY5sk31e+MfgLaJoXwlpff78XXv1M2LuFLdHgCbyRjPviW+mYTaYrKvZuor34IbnnofRwHmcVmft6cDegayPxtmh2KKlBUUFBQUFBQUIAw/MfJLCpQPM9RNuUpoQOl5yKymfW08v3PFaXLoE1f1o36epswa/KXLK7RxjDeh5Mssu+cCW1ODhq0PzLg7N0Ui1WY/kcxlD+rLXVfq2M11lm7aTPWlJR4aQzWLNt6iJeA+sXg73JVISdgvLAIk2hmXc4ZouvSOYswMQAzH7OvwmxbiQ+ccWbPlsvP2UdHtIC2lSkOvstOWBvOv5I36OcaMGElwwHL+2gCbpcIeeMu6mt9EJNODl+Os00SV3tj9qneYzr1FYfWQFNYNCcNeaRtofY/XPG5t+0oZxAPiMMi8y09+HUY6I5bbd5Iwa0FEjd0xvZd2Vx9ICgsBNo8135FfROCcJY0uoRrP1qOY9JRRpvR1LfVM1jPdk0mZ8wvPYQzqFN7455+ifWHcFvD+Bad/2XWs/hP9yiqQPE8h5eTQXiBcq6/Cd8crQ6mXBxpjvuQXB1IfhidsX1UAL9UFibjm/I6bx6g9jHmQluGlZdi3Jzw+zpRaj5VTpc/5b9r46gz7qvKKeZizax1rtNLN1PfH25/q1HMRImFHbEUhdW3K/Xdk8WnXMR445tuoo4HbLp8bJ+Rysu4r4ZkQ1tgG378S6z4+/Ir54FicAFm6nom4H4uie2ZuCxmvpeXj/WVOKjuVcaFjwsCsQzXVV9yKanb+mO5ID6HRIgfq3EvmcTKPVha681BuLVAooJMunAx84Ctdzj2Lanm05V2kmPoCCy4ODqXTxO6/HkcKJa51R34UB9uROWBtaVIFC/9Cdr6dOUtL8174slkS5Lryo7Vx7VB+Dq0FeJjYCrh69XZCxR1jp8nmiZUoKigoPUD6oWHp5f2U0FBQUFBoQYGlVFUOJ/xy8Ec4eZhv0N4YlssUGwkGRSJRDPe2Vtc+c7etvFnaJvpgsfOSYxpgd9z4q7vqG95Xzzbes1hvlvtH4tnlCbnlwun8ATxxYaDp/5dG2ODsEj43Ku55uTTa/G83j7PfEZ97zqIG8e/CuNEiLwlmEQT2JYfowkmLiKuz8KZv4oQnumodsdkCMMhrtEnbLi9IHAdnk8ssaQZnkE9IjaW+hqIiPAb6/Hxlbi1eyS0vbORjzvsEomzQv3WcubyblLifXk8P0bR7jgNnuNAjvDRj3jpec9E/ALWrVxHdWMcHh0Z78fLxxVl+NzZkMozypfOuhPaOn3yLvUVRbicHvMmLz0bsnC1YvTHvPT83nWYQd7qyMlRswiFVz0KbfoczlwOIrOeA915u4wlGWe6j7XDKg4lzkpw+1xDBYoKCgoKCgoKCg5G+DlCU61HqUDxPMekwmXCu9r+bvmbg7jPcHAzTirxdHJplE6eRBXJ7F3uQBvOm8jjGKOwxqKE0/Ed0Bbtg4kOEi2dsTxGYsovYn9ahrj2pU/Elw9OFa2i6055WOF0OfSN0/Fiw2P9whs1PUPCpQMmwiRa+Ki0R+Oxztq7W+dTX123i6j9yY04ezvNj5OK2KY8IZiPNLO54OXK4MfH/8WR0XNOJHMjYfbDRJgZfbhWWhkhWT3WgS+/5Z6kz+wKPGZNorcL7iM1Fh7nf3fB19AWGIjJGRL77uM9m6Zg3O9rLOAZ1rRjWHulkmk2yWlEkfj7eHIwl1ZaFoe/jwM6nskMdcfHeKeDCUeDXLFveDDPzi1Nxv3cxkQ+RnYlmep0M+n1lMhwwhWD4UG86qPz6Q5tkc44E13sxDWDzwYMKqOocD5D332c0Hvbv4FedwSPlrNZ+DisHm/j0sWWq/k8TxfCqIuN4M3sx4Mxey3DD9scBZm9TvCy1QmfHtDmcfSoKEzPEvvTM0VhWroot9VdlNr2xUFZoJEvUvpSTN6INvDxX2lvvQZtvR96nvr2HIeD7rxqPts2OGkFtV/TaUCjRrRJ/FyGy9Y36vBGQOKjw3gG+S0OzjsGi4Pxf4ZiXE4z2k5QX2MQFmS2uvHNXGYZJlnEpXBNOlGMzztzb7zxkfDoj5naOgfzGVLcuSZlhBV/porFX1DfqYPw2DqzDyczGfOxNuRVq/jmtogIn/8UiFs8JA71waLZ3cN5sJdchoOynglc6H08mZueVK+1pj56RWGWf7EP35BZqvB3aXGgG6k3441AegXekJdUn/swxqB6FBUUFBQUFBQUFOzBoAJFhfMZhvICYTDY39FmNcOZncP5RCJfCPHWVCxFUxHCM4rr9LjMO8QVZ18kjhbh99UplJdTXYpxycwWwLNCVoEzIQVXPCZKdu0U4uUvRMmwG0VB+4517JEueIWYe5BLZ4xvgTNobpm8MTxyxuPQ1n3mXuq7yG8RtAXegnXSJArXrqR2y0R83q0wx1DfX3Zi8ke74UOo701mkr1zQLIoqcKZrIOClw8TA3GWzCknifo+sgxnsl4MOkmeQkgIxd+lLZyPjjMEYxKNaT2eFiOR2+MqaPMv42Xr6Gpu31WJS9ftLuKjJS2H8GjRZFeeyYwLxQSeZ0bzqkDs/t+gTefKyWzlJpxhW5jESTSXFONspcXGpcSYelawB2k7khUUJ1wiXjeQT7GJWbxUNBazd+Hv48oNb2LHSq7teDZgUKVnhfMZx93CRbGb/T6o44X4Agl05wK0zZ1xgPPHMV6KWUdYgt1T+YinXmRclq2QL2BfncClmF3HuVjvS93weLhCzwjh+T+tSvnTx7XuvlBfiss8fm5ujRavHsoPkbAmYfbxIj8+j9vZiwT7O3AQKZFzFQ8km7vgYL/awsvp70/ALRFGC9/cvLwZtx7c34H3zvXMIYG1jR9DqwFrklpdeV/ldV2wgsDgr3j58M2rcTCYRjZcEtlleG0oc+Os9wOLcFvKLD/OiDe2xC0eEh0rcGtClifWb5QIisetKWYH0z9ZQB8TwFnvNjMOJM3t+ejAbuW4BaBbFmeIizZ4QzZtC+8zLnG+BtoCF7xKffMvxmMYey/BGosSCzKwpmGPCH6tXNYal7X9EvH8eUNJiRCPvS/OJQwONDFPPY93ZlywUIGigoK8WcTGis+/+U77qaCgoKCgUAN9AzOK8nlNESpQPM+hFzrtcaZljc57vqGv+0Mk1uG7uAXf+Xk549PGoxMvH4kKnPn7NY83d19difW/4tsNpr5Fnjhr5HtwuZDt2zHxrkJkbROi3kCMn52xJpkPJwGK7qvw2EEbya5KPFGCMyw3TcaEA4noNFK2asGnK0TqeFZQV46PYeKyt6lvyjI8WjDxJlzylEjOxuXDAic+1cUzBpfqXNPxe5KweNdlwdeG/k+enXV9fw60vfDYJ9S3owWXrcMiuEJAIBkJpEvjk1mqrThraM7mqbvDbTFDXCIxCq8dIQ7Y59WkfBzLSc9i0VFMpBiwkmfYXMZgBYG9eTyz2zIAZ6NLWg6nvpuO42rE2DhOViyoxMcpOoRfK16rPoI2Q3u+dhRU4O+51MGY1RhnnAW3OeH122bkk3X+0R5FnWiS0NlsDmhsCv8KiouLhY+Pj9h0KE14glnPzqQRpfJ/s4sREl3xArfOwczdBH980dafk1wfAUQuwvUPLkC9ofll0Na/mvf72XzJzb6qRGTm5IpP584X1182VoQG1S0XvnIUswBnNOc3TrM/7jNzTuWlJ5tXUKNLnstycV3byuYKyptbIO9RXZ6Ce5i6R+DvSqKVLz5ndVvnUd/SPTjA8WzLy5aGIHxz/LKCM6bHb3sP2r7vyDdGU2PwTSxFzxmkEZ74GH69B48zlJjihkutS5zaUt8RzriPdJmJB4IJ/vzcOZiHGbeDY7jU0PF6ozVrI6b8CPVNdcMSOA7iFxHigdcsk4NrqYiwgAO+53PRfUfh9W7PQ3zWt08cPrf2TcUzxCXcybjTXv58vSsx4M1+Uj7vJWwViHfdxS/jueglVdWizctfiKKiIuHtzc+hxt6HPwtsIdz1jqkq5VaLmJx78Jy8l38TTVUfUkHhjHAiK1c8+uq72k8FBQUFBYX6GUVDAx5NEar0fJ6jmbFUeBvtn30LMvEOZ9jOD+jrGrvghvY+oVy8+gTJVkbrCqlvgQWXYkp7XUd9eyzGZdzcUbjZWcJCEueB3iZh8TtJ7rH4RQlzPe27aVtmQ9+kVnfQv1uUhcf/tT/AiQGGQVjYfEMeX5GGu2PyjuUILz1WRmO9Oonrm+OM8jfJfJxWh0rMXD7Sehz1jeowDPtWcUJKswOYueoTyJmrb8ROhrb27rxMv34cLqfHLORj+JwIEcKHiI9LzC7BLOBeUfw9p7/1FrQVXfMC9b3uI65n+sdwXMn4cCcvp+5MwyS6iztwHcUR5v3QdtyX/12fPMxO7/kpJyT9MK0XtGVdhkflSZjd8DFu9T4fWSmIXqWPg2rE6qNFjc4tMfLe6Ere4rGqGreHDLwIrw3upeWaYsV5wXrWNc1IUQWK5zne3F0hXD3sB4RXtsflVOcEPOtVoiwaX5RuB7jgcmRkK2i7ZQUPFF+7CLNAs4jAsER4ZxzcumbwoMvqgycGmP2ihPV/4tfyp9VYtwSysDUOFMb4cOryCbLFNPbB80tPvjFcqkn05yVe60FcerTkcQmjI4VcaybcC5eXiqq4XNCD+7HvI4P4clRmwze4J37hrQfvFOLzY2E4DxTe6Ydlm34v4DeGsPmLG31TWUnaB4Y282p0j5qHE7/ZB92Ay+k/ZOKNj8Siu3pTe9XPL0PbTYN4C4AtAW8yH1rPS/HPH8Dn5Ztr+dz0iFkvQduGG3i/n8UZr2m5er52+G77EdpS2vD3fOs3O6FtMd5/amgbjCcC6Ux48yIR4oHLra9lc6H/u1vjc9oShTeJluJzP+tZr9M1iKhypmSW1atXi1deeUVs27ZNZGRkiJ9//llcfDE+tqtWrRKDBp1+H5S+oaH4Hvd3oQJFBQUFBQUFBQUAnUEndEycsuZ5ZxgolpWViQ4dOoipU6eKSy/llZzaOHjwYJ0eyOBg3u/8d6ECxb8Z5d96663i/fffF2+88YaYPn36qd/n5+eLadOmiXnz5gm9Xi8mTJgg3nzzTeHpyZm99XFpm2DhBcgsBpIYyG2Bd2Da+yvGWaOghIHU13fHz9B2R188f9oRYSUjgV8orXywVl62C99NHczFmZC+LgXC30UnLh03RvspRc5r4xJ3PIO20sbHsEW64oyCecWv1Pfm4j7Qdnln3lg9ZzfONv9wUTvq28aZMznTqw2NLone1gOf/xYHDT5O2Vjfb/ZlnKBRbXkW2kYd4xkJizcmaPTz4lkhz92/Q9sSX84gHelRj35fC6kVvNReowtqD/4HeMn7eCJeO6ZF8WNkKDhK7bp2uBT7XTZfGy+PwedWl2h+Hd7UA5PKAm/j12EKyc7GlXLR9PrVidooKOWZe9d9u6EtvjkX3F54IyZ3fbCLz1y+si2+seiP4vGtEh3JeFfREpNzJPbl4nUnjBC7SsjxOVvQG3RCrz/7GcVRo0ZpjzOFDAx9fXlV6WxCkVlIlP/OO+/Q58kAcuPGjSI8/PT+mGuuuUbs3btXLF26VMyfP18LPm+++eZz+K4V/g6axcaIbz75QPupoKCgoKBwCga90DXgUZO9kWzp2o+qqrM7PaZjx44iLCxMDBs2TKxbt06ca6iMYiOj/OPHj2sZw8WLF4sxY+pm0fbv3y8WLVoktmzZIrp27ar97q233hKjR48Wr776qt3AEsFsxfIN/m6GRjVgS6wuxKnqKzxxBk1ieTjW/+rux6erGDviPsMhZt47V/IrnvoS0pNPmygIxhMjSp09RHV1tcjJyRFBQUHC2blus3+xL+6dCRVcW6PQiokDeT2up76fFWDSSW44l14IG4H7gWYe5BmFMS14tsrLGe+aM0v4gpiuw5nfCBv/LvUmnBV+eTXWHJS4qTse8TjWv4T6rsnAy2Qzf77XrmyFJ3fEV/HPa/HAUjTGap658K/GJIuFXj2p70hnPInEkIOlcySOuvNRep6x+DhMLOGvbdmF+0w/3sU3eJe1TYE2Ywwn75X6YP3GosVzqa+4Fve/lhLpHImtw+6DtiE2rs5wrByfHxHeXPzVS4cznakhPJMZ64fvbZ1dsTSSxM5yLq30b0Kn12nlZ4fP+5/mcVRU3fP8iSeeEE8+ySdeNQQyOJw9e7YWV8jg86OPPhIDBw4UmzZtEp0748lFfxcqUGwErFaruO6668T9998v2rQ5fSHYsGGDlhauCRIlhg4dqpWg5QG95JLTSQzyoNfedchdiESMh014e9pn7BpKMYPU7ItnvUpc6oFvurYSXtZsF4ib+40O0vM2N5IuT+GEFPeJ9+LXTeZsy4S9ePTUzoTx4uCeP8X1Fw0Wn85bIVrU0+QzWfENPcLMy5ZHq/Dn7eTCiT+WEBzs+Zn4nNjAClwCLAjlc4KDv3ua2qsnPQVt03vy827jCUwqiKnATG2JJG98w57UhevZbTyGmZyWCN620Dscn9NODkSi030wozoxh+tolnniMm3YXl4u/cgJ+94cxc8724HD0FbZhre07Enhrx3mhTeSAUVklrf8211xa8rzsbxdwhZUd357HWTisYISPi54PfS84m7qazi2FdpaE0KhRNrNWAUi+XU+UCFO4M3gz3mcNPh5OQ4Up3hwvcrCqO7Q5sx6pYQQLVzxNeyZjUdwupXgsYFnC1rpuQGBYs1wjPT09Do9hC4uPIHSULRo0UJ71KB3794iOTlZa3374otzx/xWpedG4KWXXhJGo1HcdZd9EdDMzMzTmkvl8/39/TWbPbzwwguasGfNo/6OREFBQUFBQeGfh06vb/BDQgaJtR9nK1C0h+7du4ukJKxycTagMopnCElwkaSU7du3nzHDieHhhx8W9957b52MogwW9buXC72H/ZS8zYgbfHeE4oHyEk4GXE5tvRdrzkl4DsHEAedCXrbWV+LMjinnOPXVlWCpEXMJz2QYeuCRd4HCKLJcT2YNfF0NIpBMj6mPzWVYSkLCm2Qjqr0w4UTCNZNLvjAstGCpkeGBXOKk4HqeUQzJxe/LHMizlb0CcNagUM/LliEkW+2ZjjM3EnmkfHjzlzuo75LJeFyeJfsY9c024uMQUc2zYB55OLMnfLBUjMTUeEzusB3GmoISa3xxNhLnixxnDCU6GXHJ1BJNsn4yc7RzPrQFfMNLwLaR/aHtFc8R1LefHl8v/m6cgOMa1Anawk08E1b14pfQ5vMOrq5I5NyDNWdv6MzzQ+56XBK3leC2BAk3I3ntX1+jvi59xkNbiiduDyixFZ93GcV/Ejt37tRK0ucSKlA8Q6xZs0ZkZ2eL6Oi/+ocsFouYMWOGmDlzpkhNTdX0jORzasNsNmtMaKR1JHcc9nYdtuoqYQO6Z9mtR8P32e5/gQ+CgfTWPe88lPpeSRjTCWm4RCDxswfuFYxsyXXUuhRsgjZdG3wjkPjgMF78bgvZLwrKTvYwhZeliLiSesdBhxe/oGCuwedqwTeZz/fw4HZKGO7ZOeTES7xfrcEM4T/ICEaJZwZxBqkpBJdT80z8vPv9MNZhi/bhPXuDcv6AthPkWpDwI/1g393wV4uIPRhObGsUQ1hDGb5WvtVxrdMJ23Hw49Qb31Qlqsm8bnMC30QOIOXS9//kI/xGEK1DCV0m2Ugm8daTzDYXQVv0BB50l3XDjNslc/jfvaQ1VltodmwN9bVF4fXBmMt7srfn45v/GBIISoQU4U2GxYMfo9UDcYn/toH/R333P4jXu5JirrHKthjvb8L9q1Xlpf+MPI6h4T2KDUVpaWmdbGBKSooW+Mnqo4wxZAJJ8iE+//xzzS5jjLi4OK3lrbKyUutRXLFihViyhCsZ/F2oQPEMIXsTZb9hbYwYMUL7/ZQpU7R/9+rVSxQWFmrZxy5dumi/kwdT9jb26IEDJQUFBQUFBYXzCzotUHTcqadzQG6sj61bt9YR0K6pKk6ePFl8+umnmjxfWtpfQbIkXcqklAwe3d3dRfv27cWyZcvsinCfTehsNjLb7D+K2lF+p06dxOuvv64diJoovz5iY2M1DcXaOoqSNZ2VlaUxlEwmkxZESnLL119/fUbDyHckH4M6iuVkmn2bcl5esnhh1rO+go1wkpNMcFbh0wOcQTolHu9Njjx4J/WNfwZPddBXcHKHzcWblsNlEG8ymYWTk1EjHdXGcX9cavd05ovH5uP4+8gm2SaJRH9MGmoRyJmL7lsxeWeUA4bo3CknNzcIJ0px+amlmZdid9+NS2bNv/yF+ho3/gBtuo6YiS9hWvwRtLn24KVH2/+m9thDqlsc9Q0gbQx7sjkLtLcOE5Lyf8FlSQmfSfdDm76MT9eYV4ynJ0U/zMdsen2MzzuJyHUfQ5tLJ67fWhqIy4/VVn4b8y3BmUybM2fb6tKwnqGOtP84gikNZ/0lRhzE684vHgupb9HleDzg3mye2RuWuxLabOV8fbeZ8Jqmd9AucaI1bg+KtGAWf3FJiQhM7CiKiorqEEjOBmruw7936SY8DI7zamUWsxi9bcs5eS//JlRGsRFRfkPw1VdfiTvvvFMMGTLklOD2rFmzzvi9PP77QeHkZj9gCPPFwcIjg7kAcaAFlz3NAbHU16bHp80N4XwReulPvLA+9MjD1Pe4C5ZeCNrW+NS7ZcgNf/2/HXs56ctZlcoD1H4xmPUc5sWDvWa+OEBxTV5PfY+1w6XJL9c+QH3dHZREiyoxa1JXyYMQ13dxsDfvEJftefQH3A/2fACXGum8AfdVxgy+mvqKNOw7t5QHGTNa4VJUmyAuk1Uk8KjMY5c/QX19DuOb/Rw9l9EY2gx/zxFz+PpX+sNz1H70Ely6jNk0h/o6D8ctD+3u4D2Kr947BNomOHMR6TW+uAr0yPd8bvplffFaekkv3AsqsbI1ZmNXhnGplS2H8bXULYIHMOuccOvRAD1nPe93x8fIZOHBfCLZVOVV4/J/iYM572cDOl0DJ7NY1azn/wykLtGZJFplX2J9yOxjQ7OHCv8+Dh8+LO6adqeY9dbbIjERkxcUFBQUFP5b0Bv02sPh82xNU0hGBYrnOd68uJXwAinsXVm4dBVSwEvPpjCccfwjjbPI+u76ANrMY+xLBtXggVa4BGTag0s8EmEdgqDNSobRS+xrPg7a2h5cJUz7k8TaNWuEae8fwsVal33t+v130HfieE4qMBRh0snbGbwU0yYCtwCkhnL+aeRezBA9cSsu4WtYjz+vhDUBD61PDcQsT4mEtNXQVhLEMyyz7sYjDYeVYKKThkfwCL8UHS61SsyvxISEG3a+TX03x+ISYI9qnsk64opbBGJJtlkixwOTbJLXc2HrWF+coQkLx2oJEp4T76F2r+RV0GbrN5H66grw2jFmLM+CX1y2AdpSw3nrQSRJGnx3C+85P5yHyR2VZp6M+K0Ct/h0ef4O6ls6Hmcco8p4VlD3IWYn39mNs61fd8VafisTL6e+7oC0KdHMVpccWhtOVbwc/o+SWWwqo6jwLyC/0iKqneyX1XqH4ZvFllzOIO5+HJdMhlTz8rHojqdNVM3jbDx9d9xLtqMln/Xs9RCeZLJ7+nvU99IiLIGSOuczkZF9slST8ds84b/Rv449ciwuxbxnwTNVJW5NXQttsSGcMZvkhgOYcgdTHX73x/1eQxe8Sn1TRsyg9uZkItCuLH7u5JFgcEdGcaP7W3XuvFcw+XFcbo979nXqe5c3CegG8wlOPq74PVdvXEZ9o0fgkZ82B9Jc3tl4ozilK59Esvk43qBUfvsm9XWN5schp+uV0BYiOHs1zz0C2t5qzQX3q/bhY2hL4AFblDOZNrSd9wp6d8ds6yEvc8b0y9fhFoHwy/H3KDHJj8iQ7eZtK36Pz4a2xB1cFP/uE3gz99YJLG+mIQQH7DYLbtOxGblkz9mATgWKCgoKCgoKCgoK9qB3NgiD0eD4efqmyQ1WrOfzFDVsqwP/N1V4udrPHObf8CL0X5XCiQG3RmPdMSbkreE4niO90Y+XYuYQPaw7+vJsRBvC9NVt+pH6ii5153HXn8e8a+dOMXxgX7Fk1VrRvmNd4d8KOXAbINCN77XyK3Dmz8eF97MczMfHqLONC5szNm60nmfu5iTzEV9TEgkJx8KZ3NvLMFHi7TW8JPaB9zpo29buGurbzA+/Z78VOIMi8VUULpn1jeaak6ytKebAAupr64JZoMY8Ptt6bn7drHhtXJzLiV8LQ3HFYHQkP991Zj7r+6djOOMyIYz76nLJWEoyOs4RkWJJMl8rrw3FWXKrMydSpAp8HJpV8WtYV44JhxY/nF2VWF+Cr7P+Nj7FwxSA147lWdRVVJG1stPnD3LfGbiNo6gKr0mlJcViSNu4c8p6Xjm0v/B0cpxXKzWZxaBlqxXrWUGhKSIiKlK8Nutt7aeCgoKCgkINdAZ9w3QUrU2TzKIyiucpanYy25PSoY6i/oVbof/2qbwPbXwwzlY9v4v3fDzcBY+t++ggn5AQT6aCsCZ6ibQi/NotArhMSdiRFdC2ORD31UgEvnATtMXM5IPYF6fg7N3o8i3U1xaHe5TKXHGmQsLdhBu8zcu4xMn2Ln/JBdlDtyPzoM3Qjk/9yDBi/c6IIk7A2uWM2eitffgyZszBWZT3szBJSuKadvg9f7DtBPW9ur39SUwSRQ76TDem4z6zEQn8+N/6PSaG/TqE91FVR+C+2+dX46yeRGklXzuu64Jn2LfaxyVu1sRiQtqAbEySkUj7Hus7xs7gslxZ3rjf28uZlyPdSnFP35PbeQZ1ShecNZy7l6f27u6JN7xf7sbEEImpgdi+36059T2chwmWo2Id6FXacDbSZHCl98qIsNBzmlFcPXpQgzOK/X9fqTKKCv8sYrK3C+9y+zqKpuexeO3vv/Cb7sX9cFA2NAHfGCVsOlwGiPbh2oBdl+IAVn/9U9T3tu9wyXvRVVxEen8EDmCO55SK4oJ8sWXlItFt0Ejh7Vf3Jtz9SVzif3kDn099/Vr8efff9Ar1bXUUE2EMLQdT33W5eGfbyxULeUssOpjD31efK6Ct2oFWmieZBevoJhTCxlLuwMGrhKUV3gz0deXzut12/Q5t5dXtqC8LJELSOKkgvjkWPjc78QDlh+swC7ia3JAlVhzFmxsXNstXCHF5Nz7ij3FwPvLEWocS7a7FCgOZC5dSX+MTmHSU7IB97E9IDIWVPNgvccZr6RNd8NxrCUMBDvYTAnmbTla5udHtEosL8Ro+1IsPY0iMxPcVGxmFKrE1B7/ntkH4GFkciK3/o2QWa9MkszTNPKmCwhkiN/O4+ODpB7SfCgoKCgoK9UvPugY8miJU6fk8RU3KOzv1sPD2tq9dZkjDEje5Mbyc6kx2R17FXGct2x2XNQL1vJxSbsA7zs//zKS+w+Kx7qCPC8+wBNmw9Ebm64+I3Rm5Yuwn88T8qReJdmF1ZWkCOmA5kYoRfOygbyEmaNhy+PdsKcAlIENrfnwzyBQbLwckmsOERCPRevVb0FY8hkvr+Dvj5WbNcaw5JzGETIXIDHAwichEsjdGngVPriYls4evpb7NH8cTVHY5cQmrdgXbRGNhLcNZQV0sz4Ja9mDZlsKuOJssUWnh2crQHbi8bAjAZXqJu5LCoO2NMVwkf2MGPrdaBvCWF38TnjaUZsOTlySidZiQku/EdVSdvsRaiKZr+WSWwBJMdtKV8ulJlgCcFX58Cx87yfBMJ17ALPrhfWjzG4+vs+KSUuHfvv85LT2vnzBUeDo5HtdYajKJ3j8uU6VnhfMHS1xwL9EgB8FAURVe0Evnf0Z9g7v3hzZrCV4YJTybd4O269rzkWYbydzkEU6cBfpDCQ5uhz/4tnDfuUOIT+YJ9+sfFJ4d64pGu57AGoxz9vB+n/EtcYko2JvfGHW7sM6exQffNCXcLHgjkFrImclxvi7U/mcfHBz3zNxOfU1HD0Bb/z5ckHfKb3ih/iCMzxiuIHp2nulbqW98IB7DlvQC71E1u+Cgu10x7/fb7oPFyzvreY/aZxUJ0HYD6ZuTyOiEj4PTu3z8o/NtLzV687O3BRZyl3jbG89Gtu5dTn23E9H0nmEORsBZ8G0y2srXuyU5WOt2WCZXasjOxuNBw45iBQCJysR+0ObswltPTMvxHPFbtuLrV8L6ENaztSVz3dDF/bFY+5UVRBGh0oHu71mATt/AEX4NeM6FCBUoKigoKCgoKCgA6PUNHOFnaZqlZxUonucwuXgJk4v9FPawCsz0+zWJTww5XowzHeMmPEJ9ncjw9hQH2aothMl5WWu+G2tOGNOTF/PS8zuX4AZu9/3LRHDWcdG/c1sRnLVLeB2oW5rJScRN9jcF82kSuoO4yd4QzKV4klpg7cfI+Xx0nPdIPNXjYC4vLbdJw+POJAp8+0KbzpmPlhP9sd6hrhxnUCQu7YgzzulBvPToSQgLrpG8FFtsw58pYRfXQjzeEpMoInOPUd8qopVnDubZ94l++D0vPcZL7YMOLoI2222PU1+dmWsS/tIclxBH+vP3tbeoJbS1aMmJUHdsIWSnjdRVGMJwRjkloK7man2M8McZVL1rK+pbcSfOsF63EBP7JF6NxiQb3z/4iE7LONw+8ozgJMn3rZgIl9KMk5Uu9cIVA/MGrFphLuMtK/8omcXQNDOKqkfxPEVNb8SmQ2nCE8jjVJhw+bjlei4iPK/FJGi7OJPf/Ep645u9mwNWJIPLQS5xscIdy8W0C+bllEByA9tZgcVpJdoH4lLsslQ+ZzSaSP40JzdziUMF1Y1m+rUTuLy4oCsuw0qM2fQ1tZt24R42p46DqK8gjFtbVgp1rWqDRx66FHLx4lWlvo3aNEkcyMKbgWcjebD3XDZm49/YlYsmZ5dhFmi5ibNtuxL1HJsTD8iM+bh39vZ1/Lua3J2zntek4uvwnq585vb0RbhU/+ZgrtRg3YaZ65a+XKzdaMGfufSz56nvoyH4td9qzttWhG8INJUE8I2RVzJWTCiI4/3NvhW4rcHi4aCvMguXpi1+XJmCjaU0FGfSHsWAdn3PaY/ilutGC0/nBvQoVptEty9+Vz2KCgpNEVarVZhNJmF0ctLKDAoKCgoKChI6vV57OEJDnnMhQgWK5zmC3IzCC5R6PTd/D/2MrflIqwmVmFFpdeXCqBmlONPRpggzsSVOhOCsYFUE3+lmH8Nla09nvnuzuGJR5YzsQpG8b5eYccVI8dr3i0R867oadJ2LMJnFxYWXLVsXYHLHtHVcz+yRIQmNYq1LmJ1xuSzzV54xtnryTKdTM0wMmJ3Oz50bO2ECj86LZ4XSi7GYc7yRv2eWce4ezjPK+bHkOJXzzJ5vKc5ChBbwMp5/GGZyVzrQq1x9AmdBS6v5CMdekTgreGc/Pt5xdxbPsN/enbRbOHhfV3fBvmvz+fcR2RGztWMruTag1Q3rbHpdcQf13fDGPmirsvK10khK3h5eONsoYYkmRMencRlXYmUEtudfzbVu43yxoLo+fRf1zYjqDW3fpuLrt7KMM+3PBvSGBvYoNlF5HBUonuc4VmISnsL+DdJ/+R/Qz3TPLPq6kTtxkFnS8yrq60EY08v0WEpGIo7MAo07ykvPS8xYRNhtHxfctVXh8tHYyESx3e1kX2I/tzzR2aNumaN4MWbreY3AzFSJ0tXY9/VrHm20aK7Ppm+p7+II3N84nMgMSeQ7WOy2G1pD263RvEftBAmsiqp4SXTNUfzazVpy5qrXwjegzaVtL+rr6YXruMuqeK/grW3JEnuCl61fXotLwFM687I1m1SUlM97uo6X4JYHPVPMlkx+Dx6w55BzOqaSC1BHeuMAtoy04Tiaq5wqcHAj8daiw9D25DC8mZPYPGYztKW34NJaa47int3LfsdSMhL5o3Cf4baxPDDeGoPXpe4WLmG2rQK3D3Tz4ROQSqrx2jA0Hr9uaYmDvuizAUMDNRJVoKigoKCgoKCg8B8sPRtU6VnhPEXb0r3CW9hPu1c8hjWrvnGg7zelZY9GlZYl2pTsgbaoIC4iXOaMT7mlXvg9SaQlY6FYfWueYfksF+9mJxUdELbSk7t3+dNWVJe5p7/mMejbcS3WHJMovAwzyN1LuBZekCcuL1X1vpr6js3C479sDsg7u+++l9qHfjgH2uYk89Lzde0wOz2vgp93roQoZV3PdRSdRtwIbZadS6iviMQl4MFJm6irJQVnYF5x4cSfFkH4uzxIZupKDPTBpWefMK7f6Xl8R6N0ECWWePPsbKQzzlbajnEBet/EuEZnFMv8sK/JwXr3Sj+cUS51QAVNbT4S2mwOCGnX+eP1IWkY1hyUiHXGbRoFHS+hvl23Y31HnQNR9E4xuE2jyMCrTc2LMFnJ7I+zycVGxySTvwud6lFUUFBQUFBQUFCwB51WejY04Hm8Z/lChQoUz3OkB7YXXkAeJzoTZ/a+WM3V6qeMwrvZVuVcpsTUFsuUrD/GdQX7hOIRf8PdHIzw60QGzpv4qTwyAWcFLPouolV4O5G0t78IDgoUlnpagB75ydB3d1s+0ozNTzmu572CUSlY4M3Zl09muWkz3mW/dhHOrkjsePhDasdUFiFaB/Fs5aYBg6Gt1wKu79YuFBMlqo9x2RZDAc5W/Bw0lPr65OC+vMGefISbpdUAaJum571V2zPLGtXPJXHfenwdTurKx2zetxC/9uyruBbegEWvUXtGyH3Q9kYqrwo80gyvWfuy+brT/CjuFSwJx8dIQp+FCSm/mbC2o0TrYHw9RHrx4/9FOq4o9OaXmTCkYhJdEOm5lWD51X1BvOrTbP5MaPMI5+vOOy5Yn7U/6NOXKC3BtrMFXQN7FM901vPq1avFK6+8IrZt2yYyMjLEzz//LC6+mE8oWrVqlbj33nvF3r17RVRUlHj00UfF9ddfL84lVKB4hgfPZDJpB+b3338XR44c0TSWhg4dKl588UURHv5XY3t+fr6YNm2amDdvnia3MmHCBPHmm28KT08HV3g9GHQ67WEPFh+8sC65HTP1NBzGI6COxfGSmBshs/TNw/pdEq+k4TBjXCvM8pNI3MUDCYaAnph0sDlPfr9OQriGiRNaLFL3htTTAzPuDpObuYRRj493y6z11HerH16Uu5zg3/N9g/DNzzuXi/VOTOKsaIM/3ii0mI9JUhK2ZWSMVzUX3Bb5x6HJpT1mTEr83wH789IlnmuFX1fiqcPYt08lLtNK6MnIQtH/OurbNQyfdwYHbQuD3YiKtAM9ux9v6Apte3N4yds6gs/6jnbDt5yXhvNAQrcJl0RdQvA5KZGzeCG0xd0znP/dMkyychc8y5Tgh33/OMpJJVe2xhtJw35O/NP5YvJHRTAPbp1S90Kb12uc5e16/RRoM2fx1oJbLbiNo9tbWNXCUtX4+dNnNJlF3wDW8xmWnsvKykSHDh3E1KlTxaWXXurw+SkpKWLMmDHi1ltvFV999ZVYvny5uPHGG0VYWJgYMWKEOFdomgX1v4mag/fOO++cZisvLxfbt28Xjz32mPbzp59+EgcPHhTjxo2r87xrrrlGi/iXLl0q5s+frwWfN9+Mp2Uo/Ls4kZYqHr9zqvZTQUFBQUGhfkZR14BHjVB37UdVlf0s/qhRo8Szzz4rLrmE943WYPbs2SIuLk689tprolWrVuLOO+8Ul112mXjjDazqcDagJrM4gE6nc5gO3rJli+jevbs4evSoiI6OFvv37xetW7fWft+168nd+aJFi8To0aPFsWPH6mQeHSnC5x7aLry9QEbDijN7Fh9emhQ6vEdIKeZlrcBvnoA2v+F1A+b6sIbihmarg2H1Dy7F5cMRrbiu2KAYvCPVWc1ix86donff/mL92tWiU8e6Y7kyHr8N+z6CCUUSBRX4u9yRwXXjEonESctALgdzz69Yo++WPjxz293fwZKwczE0bY7GzfsSXfdiWZ/qQVOp71e7MZGicxjX0eziiqV1rK48+745H5eee/jwkZVFn78CbeYK7tvjIM4oT7+Ra47e3hWvMbpqnoFhk1uSb51IfY2v8Kk+8dVkgo6Vk0qEAZdqt5r59R/nh6crBaTi6orES7n4ermmI19nQ4ni06EiTsBpvg8TtJ63cNLQY/6HoK1kK/+8BZdheZyY7K3Ud6UTrhgNqthJfZNDe0Jb7P7foK24rEIEj735nE5m2ffgJOHl4liGp6SqWrR+6fPTfv/EE0+IJ5988m/HGv379xedO3cWM2f+VeKfM2eOmD59uvb5zxVU6fksQB4geZB9fU/2K23YsEH7/5ogUUKWp2VaetOmTXZ3D3LHUXvXIU9QiY1lvsJDbz9QrDLjIKS7Ny+JeJRjzbJm+3hZw3YTPuFXnuD9T/7luHeuY8kR6vvoEDzP1T8fL4wSlgoS/BxYK/SHTv5t/aENQq+rW9YzPILHIUYU8zJuaAgu87Q3Yxa3xHsn8PHtmcfL1h+PxUGGoQSP95OwVfIg9EgrvBnolb2F+k6v7gdtjzhgrvYljEo/V36+v7wDv/aMnly/Md4PB4pJVZxx2WLcldA2v5KPu0sKxefsC9u5sLXTCSJurOfLvjkdX0sJb35MfW1OfJOR64KDroxS3mvWYtNH0ObTh1drAgvwZ8p3MNJu1BM42xP+IX5PEoeK8SYkOZ8H7LkxY6FtsJ7rWeYFYG3IX61Yj1ZCn4I3VSv289apz0fgza81AKsHSMS44HNn4mGsV2mq4O0/ZwM6XQNZz/9LwKSnp9cJWl1c8EblTJCZmSlCQupuiuS/ZbxQUVEh3Nz42t1YqNLz30RlZaV48MEHxVVXXXXqxJAHMzi47pQJo9Eo/P39NZs9vPDCC9rOpeYhm1QVFBQUFBQULqzSs7e3d53H2QoU/y2ojOLfgCS2XHHFFUJW7997j5cgHeHhhx/WmEw1kDsEGSwm+LkIL2/7GQ8D2VU+spBn2B4ejHdoR2NHU9+N2+rqDNbG3W14dubO5Zg48PYgPtLOy4CzQinuXL8x5igut9gSuwtR8b+dWHQbIRLrjuVbdgTvsEO9IjnrsQK/Z4N3IvUdT6oopc6cqetRid/ztE28tWDmSM7GnrsZs9Mf8OXs49f742P8yvYT1LewHJdqX2zHs1EXtWoGbdmVPDvjS7KVPi48k3lItIK2lg54bbkkg/FoM1LCFUJ8lItLsaMXPEt9g+/H5XIbaVmRyDPx7yO4imSzPXkZ9/sYrDDw/c9YAUJiztV4pF1QNtYclXC9BJd5bft5GTexE27F8HPFJCmJ0MKDjRorKPFrOr5WbgjlJcryFXOh7aqJWBdWwmLFf9dwmFdBsqNxteHba/Hxk/fKkLvFBcl6PlOEhoaKrKy6FS/5bxmMnqtsooQKFP9mkCj7ElesWFEnzSwPZnZ23X4qs9msMaGlzR7kjsPeriPAWiS8LfaDDZsenxjPj8JlWgmPnfOhLdyLS370Iubv0vF4N4kqMsIvy4iZehJXvY0lLr67mc+21jnjAHZdsbvI94gVN874P3HcI1ZUFNftDRzcDO8Go4oIq9WBuLXFk39ePZlB+20q36Fe3gq/9sTOPJjXF3NG7X2dcbCXrx9IfQ/l4fFxheW8Z7OanDs2B+XU1nm4t8rcrPs5q7tEeOHSdGoR71FMIIGCJQP360oM/gbL1Ky6gUvYRGTiXsG+fry1JKSMt1NYvLFgs+/mb6jv4C64jD88nku+sEptdQQOQiSMV2C7IY+T36qXfQptvpW8ZHqvK27xeGkED6ovzsGsd52Vr+9HR2AJo+YmXi435uPvo7IFXxtCt8+Dtl+8cHtAeSlvw2hKs5579eqlKa7UhiTMyt+fS6jS898IEg8fPiyWLVsmAgLqZmDkQSssLNTkdWogg0mr1Sp69OA6VAr/DvyDQsQ1t03XfiooKCgoKNRAp9edms7CH7w6UR+lpaVi586d2qNG/kb+f1pa2qlK46RJk049X8riSFm+Bx54QBw4cEC8++674vvvvxf33MMn9fxdqIwiOHhJSUmn/l1z8GSPodQrknR0KY0jZW8sFsupvkNpd3Z21mjrI0eOFDfddJNGZ5eBpaSxX3nllQ1iPNeGbd9aYfOwnznUtekP/dx2/Exfd+tzn0Fbp0V8pFlSAc6EXLIF76AlLh+FWZOGIk4MefrSuiXh2gBJ11OojMOMuj07M0V5SbFI3rlZxHfsLtzrCZz7u+Gs0EF3nrltUfHXeVQf1nW4xCOR1xvr7L01n5dxOoQSMouDtcyyl2s0ij74GPqRLKhE859egrZn2uPjK6HvjVsipq3go+XuG4izhlHlXL+xwg1nZ11NPJvhVoG/jwA3vhaYvHF7iHX7Suobdztm6gfH8NaCXMLUP6Hj2ejIQixOLVHihz+TZ+/LqW8wmYzhiMl9ohozVv/PQZtOtzicrewRyY9hi6FYCPlwKc/TvLj1C2y0cc1JcxzWwiyyOMi+Z2J28opS3i4zIBsPJ6gI4PqNv3hgLdSB0bjUXlJ8ZsHZ+VR63rp1qxg06C/d4pr2s8mTJ4tPP/1U03GuCRolpDTOggULtMBQ6jJHRkaKjz766JxqKEooeRygfF774NVAHjxJcZcHyx5WrlwpBg48mV6XZWYZHNYW3J41a1aDBbdraPm77poIafmrrsC9RiMT+M1gwzFc5hsYy/tf8smNxNXIL9rgCtyHtrGSl4++24H7G5/K4DOXX4yZDG1bDueJkmOHxPY3bhad7/lAeEXWDf4W3da90TeoMV9gmZpHR/GFs8eBH6DN2JGLoq8oxeXhcC/XRvfkSYQcWgpt1na8d/Kl9fj4T+nMJ3OwWdAttuD50xIrWlwFbUNjuCzT1hGjoM32+S/U12QhE5B+4HIZK0Y9DG0TA3hwm+qKRbVjq7nAeKU/Zib/mcXP93bBfNY3K7e/thJvqiQOEjbulzfzSk1cHg5+LAGcfa7PwIHk8D94X9jvzfH179SyG/W1eOA1vNIdz66XcM/HChIztvIe5fFtcVk7yINLxDiTXeiG9ELqu4kc35kjY+i9Mjgy9pzK4xx56Q7h5eqYkFJSWSWaPfjOOXkv/yZURtEOZLDH4ueGxNYyu/j111xTTEFBQUFBQeH8hu4M5XGaGlSgeJ5j+fj/E24e9tlxlzbHO85qksmQYK0UFiv3LSd6d/tzMFlBoncUZgmXFPMy3pudcDZifacHqe+LeswStUVXie37q4XMSbzXvVp0blW3YX9rFv5Mb/7BtR/n3dAF2oz5nJBQMRCXrZIcECGGuOFxWdct5czkz+L5rO+s1rgE7Pnlc9T3vuseh7YUB5+pmS/OZpiG3cJ9iUaf3kHpucdc1k7BsyTbSJbce/qr1LcfydxXrfiK+oYT8lbBEU7AMN6Ej2E8GUknkVbMj2GYJ77lfNyPZ6vMIceg7bCZE5Jez8Yl4nsFHy2XGo6JAguncJHw9ApMhInW8XNnSQ7+PtqG8L/7XQauXPVpxm/7HUNxhj2XZPUlcsrwddbpJa51OfH68dBmzMYkKmPJP6CjaDAIPWl9qP28pggVKCooKCgoKCgonOfyOP8WVKB4nsPdaBBuTvZ3KWvTcJ9hx1DeC+njigka5S9Po74BM2ZBW3Mv3scxi2jl3d2Ov+dd5biRuqcRT5qRyHXDpJPM+x8Wx4pLRTNvD3FszjfCxbvu++hSa1xSfSSGci0007fPQ5vuigeorxNZcxw1P1hJf9NnF/HFzFDAmUEFlTjTta7HndQ3ivS4tfgNf1cS7pfjrOH8fH4cxjnhzG9pRCfqW/D0rdAWMR2PO5OI8sFZoS93cxmiAHfsa068lvpe4Ykz6D9GXUp9h8/GvZHVU3jGuIWey+PkWbGqQK431rqUqFqOZX2aG/mEnF0+WJrF5s57siON+Jyt0vM+tOQCvEbHOBj/OMoFa05mvs0n5Eye9jS0nbDxnlzvIlzpcNmAR+lJhFfhaoXxc06w/OUg7lG81BeXwCyGcy+Po/uPB4qKzHKe4tSs51XfC29P0CAeikWmbW5cK+sgGdNmdEDxz6/A5YUeelweksj+Ao/DC7pxBvXVF+AgM30OH6UV9jAWEV6dwz9vURUut4xN4CLhBW9gTTLvOK6FljkUq8juyiqlvoHu+MZ5IJeXai5rzRvlPSpwUG7x5L7GAi4UzZCkxxp8CVYsAq69L28coLy0gfte3g7/3cwSfrPvdQgz243BnLyTFIWDm5hNnLyT2gO3LeSVc3HyDiE4kPj9ML6ZS1zuzUXTLV74OBzX8WspbCf+LpPa8OC3VRXeKBQH4vnzEj/vx+f7JHfM8pWwRNedG18beWYe3Aaa8Xdt2byA+up74+/jmJkTjiLc8EZRX+WgzHt4EzTltBhGXUNO4PGf1mB8rysuKRFB8W3PKZkl/Z0HhLebYzJLcUWViLrjZUVmUVBQUFBQUFD4r0D3H88oqkDxPIc5M1WY3e1n/4wReCdsyOE73RZ+EY0qW0o46fFO2OLGpSZCr8QyNRYrL3navHC2KvDJ96nvnjxcEukfYhV/7totho65SCxbME90qKfnV6LDGRazg3y80Q2XD52GT6W+xYTM0Pzlm6jv4pvehLah8XwijOXjx6h92QhcMh/sxjNshZ7kvHPwXZYTosSvhbxtwZqDM7AjEnkW1KDDGed+7rzUerjL1dDm9wkfhyam4ozi5rbXUNdOnvgarSBkNImVqZhkMcH01xABe7B6tKX2O1fg72tyd14SDS7AWpmhHvxWluWK21aC9i+jvn5uWMbGEs4nUVXqcBYq0MrJLDYnXPVZFHMx9W1ZhX2bl3GtS4sNZ311R3dRXxGHyTuh2X/yvxuEtSFtZNyhrdr2zwhuGxoQKJ6h4PaFAhUonudI7nil8KwnAF2DmStxMHhHX76AuVjwSf/ZCs7GfbIUa8dt6I77uSSOFGD2YVtnfrNP9MeMSzcH12cM6RVLr7SIjCq9KCkp1X76V9W9yVoFDtjiTLyU6nbJX6r69WHagscoSrQagAW3DS/jvkmJwgrcetB830/Ut3QK7m+S8M/HDMRqHWeufrcHl3lv1mOtO4nPq7Ag9/4TfPzfB/2I3p2Vl1NTdVjDLcedz/pu5oTPndI7X6a+T/y4F9ruHYSFqyXKSDDYMoAzl9umLIK23LVcjD1vygBqnzUWB+X6HQupr6HbcGhLKeNs3FbleNSmJa4z9R2x7ntoMzXjTF7XarxBGfIJHzDwwXVYMWHhXt7is9yI1/cHdvBNdeg9WJ/X2hLPY3ZUTj+g533EvVGLlTz2hVj7U1/K23DOBvRGJ+3h+Hlco/JChQoUFRQUFBQUFBQQ9IaTj4Y8rwlCBYrnOUwWq/awh/dGRUG/VVkOdPaq90DbC+15aVKIi6ClZyBv+G1PJjdkEg0uCdsXT0Gb08grqO/tq/BO74tL40Wu08mMRIiTWUS51H0fe4rx7jzHk2eUgsrxzr+0Ny8felpxluSILpj6JvjjBevr3CHU97rDq6j9vQOhjdbCC/bAuoJ6ByO+bvPHZWvdPDzFRqJkAc44Vlzxf9TXh0ybcPuNayEeHjwd2pp7cD3Ly8ikmnh/fp25kYyScwGvGAgvnI0OuJW3Jdh0/Eapr8THYVP4YOrrJPBn6uzEma/m9MPQVr6MT9fxvGgKtNnKcqhvgTNu41lyJx4rKrHpBCaOvNuTl0E3T8LqA4F3Yb1Cie+O4rVyeDy/vkOycVWg6oP3qO/e6W9BW4A7Jv6VVPNqwlmBXn/y0ZDnNUGoQPE8Ryt/Z+Htbf/i1FVgIeghbrx3yhqA+xsf38QvvGe64tKVMZcLUHsk4z6VhA58/Jv1OtzTdfQxPNtW4vpb3oA2fWWR0P+vRCR/yn/XRjtXfJlYXHl/mz4bHwfvozhYl0iJx6W2CC9eBnFN2Qhtns58PvUOPywwLDE9BC+GxaTELxFmxlIjxT64xCtR9iKWbfqk3/3Ut01rXPb68Tc8Zk3ii45YkHt7fy4l1UmPA4nH1vLN3CPZ30CbSx6fuVvSdQK0PbWdl2mf64PlgmykX1OiyoHQ/4Fq3IfYZceH1Ne5OXlfbnz2sXDFf9ctnl8PKUa8Mao08c/bkki3VFg4K/a3PVgep9VA3noQ+wsu4+scjOgc8ykeLenjMY76Fi7FQXfYU+9Q3zADWTtsuJXC3XTugzOdwdAgMW0luK2g0ITRIiFebFryq/ZTQUFBQUHhFPSq9KxwHmPt8TLhUWR/xxQI2NAadLwk2v7oemh70gWzCzUcw2VPW2Qr6pryFSZSBJIsiMT+bJxB7dwbs+0kNhDtR2vmeiFzpB1kku7oDlF/77oqDOt/DalIon9XOOFdcv8VXOi3ch4mDnyZxnfnzW/D7PJLo3lrga6Mj7QzRePMTpUDAmJvG2HjH8MkGYkPBuExjQ+354xZfSnO7I0fypvsFxXhFg8/Bxm00l+xMPLTl2OdTAmdCZc8i9wwM1XClZSeMwp5yTtHh0llb63n4+6ea8nHA1rzsch4xkBOhDtahN93ew+uDVjdGn9fFQ6ygrEHMbmnqO0o6ptcjt/Xn2n8OntsCN60FlVx0kSEGZ/vFc5cv3XbEKxnO8gBy3/DYOw74MfXqe8f3XBVyIWcz2WluEpxdkvPhoY9rwlCBYrnOfrnrxfeVfYXm4NeOIBpYeSLUGEilt7YnsFZZMMMeBawJY2XUxOeeAba2j+5nPp+fz9mVBr8eM/eoFgiQL7bINKycsVrX88TM66+SESH1A2kBpKXLnHiGUivQtwPtmo6L3mxGcSpT7jx3qh2Y6BtloOb/eO9eLCfVIzLQFZSIpJw8cSv7aCqKa4LxYuwlbCLJQzFuIxn8cBMfIlBfoSN/yueFiLhdMktjQpeJYr98Lnlqeef960t+PPOGY77RCV0ZZjJ3zGCb25u28qD/XsG4HUnzp3fiIPd8Dm/jcxjl+iSjCeKFP22mPpuv/ddaPtyKd8ozuxO2lZC+Gb+jXX4Or21O/fNdsaLVmU5bz0YVIH7DFfr+BSjwfs/gzbr5Q9x36UfQJveDW8Ei8v4sT8b0On12qMhz2uKaJqfSkHhDJFXVCLe/2Wp9lNBQUFBQeEUdP8rPTt6OCBzXahQI/zOU9SMDsrbOE94e9rfTemMuKz5Q0Usff1RZPSci45nKxan4ozjqBBLo0VkDalczJehuFlfaq8mJcLiaovYu2unuHTYAPHT0j9Em/Z1x241q8YaXsLCCQlrzZi52jOZsy1NGTizs60vJ1EQoq5oS5jnEmYHytc++5YQZ85c3x2Ds+BhRCRa4lA+Lj32rdxNfS15WL9RT1i+mt0dkw5Mke2p74NLcPb9hh6cvNPcB+/jU+7kjHmnl75sNBEqtQgfwwTB21JsRq7RyIhyT/fg5A59BtYdLG/Wm/q6EGasPgmPnZM4FjcI2qKOb6C+C4xY+7NnJP+8zuQiZgoQEu6E+HesnKfu48pxe4jVmbd47DDjtpaO7rxEvDALB1lfbcZroamiVPxyx5BzOsIv66e3hLeHm+Pnl1WIkEunqRF+CgoKCgoKCgr/Fej+46VnFSie58gJ7Swqwc7klwN4WP0NbXnWyJiLd+fWHD5tpGdzrMOX7yA/7W+uKz1TG0fDuSxLbDEePeVZib8LCdMqLDXirTeInCMn9Q6Dd/wkIos217GbR93WqF4wiSAPvIvu2Y9nhdYcxVmQtr48cyPeuAuaPhrGR8dd1oYTJQ4E4+kMvU0HGz1dJ6OUZyN7ZxF9x+g21FdXgPsB0yJ5Njriz7nQ9mM5zwrO6N8M2t4nWRKJPnG4l9Dp4Y+oryCElSg3nvVv5oKz5LaDPHO70o9n9p7ywvJYC7Nw/6LE8LRD0GaI53/XUIrXh/0RfJpMIkkkWWJ4z95IYiv/Fk9AkfDqjeXCfuqNr2+JCdn4u/IK4FO7zC54DGulgWfV/B/BY0l1k/GkKYmhh3ZA2/ArZ9Cs3y93iHMLvWI9K5zH8Nv5C0x57yvCo6fmEu0/iU5h+AZmjcQ2iVV7cfnpxo6cVFJqwWW+UFYvlWw9D1zme+EPzrbcW4hvBj/2rRaR/rHi7sknRGTXvsIltO5nsOXh1/ZwUIp5/rPt0HbdnVyDMcQDL+j7c7EYr8Sge5+HtmnOfLFPmcYD2J534cDZ5s+JIaY5j0Nb3JWcBTxhNy7j/xzBWwAONhsBbYlunICT0fEyaBvrQJPOaTEmQjzioEzvFIxZzys5D0YMSP8dG8P4nGB9NT639D58DnygO9fR/NgJbwYHvMTnl294bA72TcfXmYQlCBODWhfg8X4SW6qxZmXUZ1ys3f8BPHP92EWc3JFZiolBQ8P4uNNdRXhdamXk5/vmLLzbD/HkRJjYJ/FoUauDIKp6K1Z5+GYnZstXlP0DfeV6xXpWUPjPIzI0WLz2IJ5moKCgoKDw34TuPy64rcgs5ylqmmjfWL5LuHnY13mb3A5npKKuxJkMiWP3Yi2tuT68BBTvh8vage587xFA7O7bf6W+ujY4K1hg5LIdK1MKoe3S8g2itLxC7DmSJto2ixae9fQpjzfH2aj7fsXlcImeCTgDc1cH/p7Tq/GYtohNn1NfYzdc9LI582zEpkJ+DE2EGBTsyTNKia64JJpl5dnZZUfyoe2y1jw7m1qEM45tKnGZTsIcRKZgmHkm07ZlHrRV9b6a+rrtwlnBL526U9/r9LhEPN8FVyIkxoTh41vthklwEsdLeJbURIhSzQ1c0ktfiTNH6e6cvBeZvrbRBKyMZni0YGYZP/5dTHh0oMWLt3jkOmFiiL+DTHYmkcD5YQ/OzklM6ojvDX+k4nVUorQatzWkF3IZm4e648+rq8LHvrikRAQltD+nZJacxXOEtwOtTu35ZeUiaMSUM34v77zzjnjllVdEZmam6NChg3jrrbdE9+72r/FPP/1UTJlSt9rg4uIiKiu5Purfgcoo2sHq1au1g7Zt2zaRkZEhfv75Z3HxxX+Va2Rs/cQTT4gPP/xQFBYWij59+oj33ntPJCb+VaLIz88X06ZNE/PmzRN6vV5MmDBBvPnmm8LTk9+k6+OaRC/h7W0/UNRV4H6/n2bispXECW8chHQw8dJEy9yt2GjA464kDluxeHG8g9R+qTMuWz+5iN/s+ybgRehQ3DCxb9dOMfGWSeK7RatE67i6rOf4TZhB+t3w/vTvbrXgPjOdhV/Ye3PwYh8dwL9nyy7cz1d9nM/67X4xz6zanPGCWfoRHv8lob8c6woaiFaao2CwGsxDr8HvB3G7RBveZiicsnDf5R07eK9oRmFbaPuqL2+1SE/EG5RhDto08g14szdaz4MbQQIy5+048JUI64TnwDtiH9+/io8OfWIoDtjd3sVi7BoGY7a9Lbbu9V4fX+w8AW2HMnnZc1ALHHRdU7yX+s7OxmMJn2jBg64qN1xqvzeSi2Z3exVrQ/Zoz9edx8gxCjryB/X9MQXfG4uIPGcF78I573sUv/vuO3HvvfeK2bNnix49eoiZM2eKESNGiIMHD4rgYPutXDIIlfYa6ByJ0P5NNM2C+t9EWVmZFtXLKN8eXn75ZTFr1iztwG7atEl4eHhoB7Z2RH/NNdeIvXv3iqVLl4r58+drwefNN9/8D34KBQUFBQUFhb8Lnd7Q4MeZ4vXXXxc33XSTliVs3bq1Fle4u7uLTz75BL8fnU6EhoaeeoSE8Oz034XKKNrBqFGjtIc9yGyijPgfffRRMX78eO13n3/+uXagfvnlF3HllVeK/fv3i0WLFoktW7aIrl27as+RqeTRo0eLV199VYSH84b/2jhQqheeQMQzyhuXLnPL+e48jJQI41a9RX1398MZpw6VvDHcbMClp+QExhEUIuHQSmjrFov1yiTah+AxbQleQpT8L5kV5XHy37Wh638l9H1pM2cV3N8RZw23FOOsrsSoktXQVuxgdBgb4Tb+gy3Ud3Y1J7vMWY/Zuu3630N9+7jgc7bcwViyg7k4izLAvJ/6TuncBdoyrXykmc8CPH3l7T5jqa8l4ySb3h5sG3kWfJkHzlZPdeafV4RhAsa6Mq4b2dwfZ8HTIodyXwcanDYnfB0+OYyPUtzWA38fg37CpBENzjjzW715AXV9qDUu89sSeavFGyk4ezs/gGcyJy3A11JyJzzFRCJO4DaNig14JKHE+kcegLacCn6NXvkxrjYtjNpFfX+txETI/xuOp1iVlvwDfYE6SWbRN+x5/ytZ1y8Ny0d9VFdXa5XLhx9++NTvZAVy6NChYsMGrNFZWloqYmJihNVqFZ07dxbPP/+8aNOGKz/8HahA8QyRkpKi9RHIA1kD2cMgU8bywMpAUf709fU9FSRKyOfLE0BmIC+55JLTXreqqkp71KDmRPt1X5ZwcbefW7eQRblrNL8ZsFmh0cOxxIFEu3IsQF11EEscSMQMxDOZXXfzBcwQiG/oV0U46lHDfUgVX70gqtJOCjJXLfxUVOytW17xHopZog/x1ijxyi5cEri9O+/3+qGwG7SFZXHx2u4RuIyz9BLeG3nZb7zv8q10LM3i3w4HKBJr3a+HNj83LgQd5oUD6/l5/O8e2olljJoH8pL36FZ/Xcf1sd+V9C/Ka6kDZq5XOSiXdyrE9bZ7tvDN5g1BuNWi2+a3qW/RyOnQFv7RfdTX/WEesKWV4TWrsNLBaLm5eFZwUTiXqXFbhbMz+zo6EC83kLnZJbx9ZFJHfB16LXuP+pY/i+eEZzsYw7e9EvfHtbr4fuqbRvp5n1nMNzdLb8TBSrEer2cScwz4enDKwgmI4go+cvZsQNfAbGHNc6Ki6rZYyVa1J588vS0nNzdXWCyW0zKC8t8HDtj/zC1atNCyje3bn+zLlMmn3r17axXMyEg+2rGxUIHiGUIGiRL2DmyNTf6s31tgNBqFv7//qefUxwsvvCCeeoqr7SucOxj1ehHg6ab9VFBQUFBQaKw8Tnp6eh0yi71sYmPRq1cv7VEDGSS2atVKvP/+++KZZ54R5wIqUDxPIFPPsqG1dkZR7kpSc0oFmnr3xSBcTjH7O9D3W4czLG10hCEohEhqfzm0tWjG09/5hBXnUs4bw00BWFTXAf9GBLrji9yza1/Ro6sQGRdfatf+dRHO3ugdNBFP74lZzzozz0ZMdMaMSZs7L5faKvH3XBbAs29ze/ORZm/kYv23KZ34+xpUjZmtZT9iDTaJxT1wy0OsrwMhYJKtdCFleomiZSugrXR8r0azgEN/fYH6duqOS61dOuGMoUTVJpz1tY7H4sUSwXlHoM0yg79ns47fUqI24SxZs/ZYyF1ivy+uRiSKKn49DMHkvjb/KxcizE/C5+zYeJ6dLyWJv1n+J1uXEB7IJsz1Qp5RvjoaL4grj3OW92AvTJL8YjBn/lqteN3xLeMC8+U+WOj7sxxcMaooczB84KwFivqGPe9/ZJOGsJ4DAwOFwWAQWVl1mejy37L3sCFwcnISnTp1EklJmIT0d6ECxTNEzcGTBzIs7K+bovx3x44dTz0nO7suy9JsNmtMaHTwUQ/D7GGBwtvLfu+OhYk9r/+Bfo6pXSdCm/4wF9WN3fQptCX15GzrrUReoWsbLgSckI/7snTePEBZnYN7iYYW8Pm1AZHYt28UXwzySMB2MJeXjyKDcF/d7A2cufxyZ8xsdHMQoK515f2e98bgBd+ajINbiZSIPtBWMhr3Rkls24lbHowOWMADYlg/L++7yp6IRcI7+vAeNbYZ0F/Er5UMFxwMhFr4JKKRKbhc/mY+D6ral+Jzx1jNy3yFP39N7X59MRv7l2LePtIrEm/2bJt+or43ZuBz+p6BmCEscVEU3mTodi6kvj4xmPU+mjCiJdJccKDgVIKDOYkUG2496reH9zdah05plEyNxK2LMUP8jr6YxS1hysXXyvWt8fVbXKwTvDP6/NVRdHZ2Fl26dBHLly8/pawi+w7lv++8s2G6vrJ0vXv3bo0Dca6g6mxniLi4OC3YkweydvZP9h7WpIPlTymbI5tUa7BixQrtBJC9jArnH/alHhdtJj+k/VRQUFBQUDhNHkffgMcZQlYSpdTeZ599phFhb7vtNk15pUYrcdKkSXXILk8//bRYsmSJOHLkiNi+fbu49tprxdGjR8WNN94ozhVURhEwimqncSWBZefOnVqPYXR0tJg+fbp49tlnNd1EGTg+9thjGpO5Zkcg+wVGjhypUd4l1d1kMmm7A0l0ORPGs4R543xhdrefWj/6G2YBJ9yJ9eokwgwk0+HFiTCfWDFb7+bkJdQ3KgtnozZ781mgwrMVNFWZONtyYCzO/BwNmCBSbTvFkROPidSY/sKjXd3PN+QgZkXOM/E5sSO2vw9tfcfyY7SzDC86LUI5QzTdDWeFXRxk3w7ncZ21nu1aQpstBNskwslh+uAgZ5DfvupF/LqPYmayxGbCmJ6zKY36Pj+qBbQZivmsb30Z/i7fz+IZtEB3nDXqEIqZyRJLbsev7XT0rw2sPRz/ClcMgh/higjVU5+jdvMfH0LbmJFc9aCU9JcYW3AB8qsjAxvdPlJmwJUb7wjexlEy/zNoazX+Bupb4YpHVk5owYlwa45hccHQEbdTX9tCfIyd+5xOxKyNV8fi639vjgMCXioWmDcH43Yns8GBLuh5rqM4ceJEkZOTIx5//HGNwyArk1I1pYYHkZaWphFha1BQUKDFFvK5fn5+WkZy/fr1mrTOuYIKFO1g69atYtCgQaf+XdM7OHnyZE0V/YEHHtAifqmLKDOHffv21Q6sq+tfAd1XX32lBYdDhgw5JbgttRcVFBQUFBQULhzo9Hrt0ZDnNQYyVkCl5lWr6g5PeOONN7THPwk1wu88Rc3ooAOpx4UXaIrNI5pWiY76aPV4j6CrctCHpMeSD34W3sNSbMSZsGoyGk7ip/044/TLdl4y/nUq7vdzKssRO3btFj2HjhUbl80XndrX7WcyeeDsjGvmHvp397th/a8WNj5KS5eHs69V8ZjYIzHpG6xZ1qc5J0LcHYE12CTSfXDWINTBCMfCKpwVCjy6jvpay7A2aEEbrivJVjnfrd9T36qeuJ/X1cb7/fYV4WxVOxs/Z9PdcHN/pJmfO8KKv+fvszghYXg8zlb5lvL3nObE++4qzNbGTXySr/0JJsJEPfg09T1oC2q0bqwg5B+jiWfJdCacyS5y5lnBFCKPdDCXjyO5vFVgo/qmJebuwz3b/WN4JruNK753fJ3KGYe9iaRbjBP+HouLS0RwbOI5HeFXsH2Z8PbycPz8kjLh13noOXkv/yZURvE8h6+rQXiDuZ4BRsxes63/kb7ulAzMIPx8GGfyFRoww9SbiIBL+BzAo+WezOSihHuP4VLcZ9dw8VpWbU2z+YpM28kAVv6U/66NmGJ8c8wP5On+crLY2zz5QmKLwAzyLRn8RvHVRF4CZqhcOJfafUbh92XMxYxZiRwD1vnyTcREF0fgZ50Q+lK8ySjodgX1zS7G11lz3gEgnMiJt9uCS4sSUc44O1FCiC4SR4kW3qBYvuz7luANSpKB/920fB44MfLXPhsm4Ejk3t4e2kLX4RKvRGIQ/q5t4zkVQr8L67tmzncw0nA8Jug5/cnVBdpfhdUF3lnDCXhX+2H7zD1cquWF9jiQ/NPm12jy1uBfnqe+ofc8C213L8Ofp7r83OsoCtme4IAdf+p5TRAqUFRQkMLIcc3EJ9/+qP1UUFBQUFA4BZ2+gYFi0+QHq9LzeYqalHfuqu+Ft6f9UtGUfXi+4xvjMfFDIoBodH2cz8tHU72wNEv55r/Y4PbgOgITVoq+45MKfCdgVtdhI8/OJGZthLb0CK6FZyITcKI9efNy2Senq/HXwKM5JklIHCF6lYmCEz/yPsMTMvxv/ItBZw+6Sj7+0eKLv+vfkrjvJSEVjV5kbcnboS3tW54F9SVTLrysPAtmXow1CY0jONPQmEUmWbjwErDZF2dfT5hdG33Oxh3nJX69Ky6xWQJ51r/SnRN03A7hisIn1XzNYmMLLS2x7I6EMRsfB105l5oxh7Zo9Dl7pBJn7w7l8arAWCPRswyIob6/HMeZrUv9sUSZxBGXulNFamN/Dn/PY8z4vrLcFVexJIYKrAOYHoizySUlxaJ9XOQ5LT3n//mH8PbydPz8klLh32GAKj0r/LOwRbUWNqCj+Go8ZrZWOGABm/3xgn9dKtcGs5hxvc3gyWtxB6z4RnJb5RjquzwJszVTHLBAPzuGb7rPeR0QGdm54oNvfhI3X3WpCAuu299z4lPMXD52Jx4rJhHVFi+OutZ9qW8oEYnWn+A9ai53vARt6x2M/+vjwZeFpGLcazSM9LdJvLYF/+1LWvPeyXgP70YFghLeJhwMHKrmvUfNh06GNtvOxdTX2gr3kj6ymR+HZ/vjICQynYvilyRgNv6OAC7RFe2NgxtfI9f+dDHzz2RpgUXEp5RjYWuJJDNuTYh2kO444oLXu+Z6PI9bwpD2J7RZI3jrSbwBb4wSfXjQlePJ22kYekXhL6R6Dd9UiV5YR3FkNN+gZL2OX3voZL6J2CLwRiGWjFE0/RPTtHT/7Yxik/pUUodowYK/pEwkO1nOXJYjbqTOkIICggwUn5n1kfZTQUFBQUGhbo+irmGPJogmVXqWw7Lfe+89MXjwYLFhwwYxdOhQjUY+f/58bdbyTz9x9f7zCTUp75+3JQkPkKXrs/8b6H99Pi+nfjmm7izq2shx4pmd0Gy8w07x41M9ogh7bWkGPxUX7cdZtNcHBjWazDByXokoTj8otrx8o+j2wEfCO6puqenXoDXQ1ymCT3V409IZ2u5u697o3anVjdM3ys34u/RK+oP6JoVxUkmC1f68cgldTir1XWDE54cTyRpItAvGmb/QCp4VOuqESRgBP/OxdJarHoU230JO3pmbjzPdo3fM5n/3ctwisCqVl0svsu2DNpuZ686VJpJspAMSVd8cfm5VtMfTI4qrOSt2Hyl7Dgzh586qLPzaDsQWxAgnfE6/mMoz6Pd3xOXKZBMvZc7egP/uS15cC1NH9PwMIbi0LFG1B7fpLGlzPfVtQ67Rkhvsj0itgektrD7QMdiF3itDwsLPbel57/qGl57b9G5ypecmFSi6u7uLAwcOaKLYDz74oMjIyBCff/652Lt3rxg4cKAmanmhoOYEzTqeBk+4Fccwwyzej8++dX4Zi66GP4772yQWHcM3mk4OhKAjcv9s9PgjUwAeAZXxwv387979CLTle0aJXTt3iuED+4olq9aK9v8bxVgDNzIL2PI3Lp/v93Lm4hTbDmhb6cflcTqG4kXt851cJHqaCQfGEl/7DIG2EQm8BSCzFDOI2x1dSn1Fi57QpDPxsYT77r4L2o4/wxmzw01YAulISDfqG3sIM2atnbikj2EfFtTPjB9MfTek40ByXCIX1L9vIe4V27Sbtzw8dSXvQxsc492omcoSrmQjMdqZb1BKQnGP28F8fu4k+Lk2WtLLj4hB2wx8/KMxD3+mV5O475TOeGPkV80F9auJHNiGY1z+bKA37lHWVVc0elPVzB/fz0pLisWQtnHnNFDM27exwYFiQOueTS5QbFKlZ09PT5H3v6kScsTNsGHDtP+XQtgVFfwkVVBQUFBQUFCAPYq6BjyaIJoUmUUGhnLeYadOncShQ4dODcmWGcXYWM7WO1+x49LLhYfR/mGqmv0D9Itaywe/65/GDOMSCz/ZrTa8S/7NwRi269p3gja3as6YzXsHM4jD/o8r1WdbceliQ1qRyCo3iH5jLhWHyg2iKK1uNqZftCOVPoy92bi5f0o8v/zyjcOhbaCOZ0H0SZhdeld7rlcnjFj7TcLvKP7bZWTMmkQbP3xuGUw4Yyzx4wmccQ7z4pnM7h9+AW0e1VxXbu4JrEl5WUUK9RXRuEHfcAyLoktYSfkwcAP+PBKtOl0NbfpKnhW6byCWiAobiklhEkerMAFLYn8e1hVtH8IzNnHpONM9fAW/Rn+/AmfvO7nwc7b4M7xWHh79IPXtkY3f89FmODMvEZuOWd43d8UlfAkrqXQkW3hGuYSMu2zmoFKlL8Oas/ucufTYBBNpWzDia7DY+E/oKOr/02SWJhUovvPOO+LRRx8V6enp4scffxQBASdZwdu2bRNXXXWVuBBRnlcJS7JJRF7Bpz1makoMyDoAbd6+vIelewQuLwfmcnmcz/f1g7bJcbwReNPFj0Pb6D/5jOnq1mOhzcfFKHzim4nHXrd/Q/C14oVI56D03CYYf1emRVh2RXvtkbhc+ns67zMbE4NLgMbMg9R3o2sb/trh+DglOxi7mlKKfeO9sNyThKkIf9fdg3jbgiFtJ7RFB/M+05ggHOxXreaCy0cHTYM2LwfSSuW+OICJac0DslakbJkh+PWdWYIPYuihn6lvSasJ1N7OBZfEB8/h/Z4rB2Mh6EUD+IQc21EclJtO8GA/7eL/g7aeTnyK0XxP3C7R9e2To2Eh7sIbY+8jnPVujsfM9os+3kJ9596O33PwEd6DWpCIZYrcyVQmCWsi7qs/ZsLl/xInnmA4G7DpDcJGppnVfl5TRJMKFCXD+e233z7t90899dS/8n4ULhxUV1WKnMwMERQaJpxduASEgoKCgsJ/CLr/dkaxSZFZJAoLC8XmzZtFdna2sNaad6rT6cR112Gx5/MNNU20e1PwrGfG9Mzz4FmDwBKccZiVygOluwNxecFaysVcdz09C9oqZ31HfZclYema/wvm8ke2QDw31+ruJ3b8uUv0GjRcbFi5RHTqULfxfV8ZLk26PjaJ/l3Tc7hEmFXKsyDRPvg4VDlooq804+xLFyv/rgp+/ZLad4zC5bYQT17GXZaMj+GdLXmWzFCCiRQFDkYpetlwudyQyhmkW31wqd6RhFtBBSbv9N35CfV1bo519I5FcQ3OyOqMRs0fllhSEQptg6N5ebjKyqsCbDb20QqejbGQhFTcHj6ydFk4Jg61CuI6mjGZm6EtNwpn3yQqyZsOdVDy3piFz52eKTyTreuB20cMRVi1QMJmxNdhtgs+NyRCipOhrXQpn6n+gNdl0HbfoHhKZumSEHVOySy5SbuEN9AzrvP8khIRmNC+yZFZmlRGcd68eeKaa64RpaWl2kGSweGFGigqKCgoKCgonAfQ/bczik0qUJwxY4aYOnWqeP755zWpnKaAKotVOJvt7zytyVg+xa8T7/diOnwHTnBCSmXmBmhzCuOEhPzXvoa2I9m8yf72PVh3bt9E3M8j4W7EmY5DWRUi6X+KEZvzhMivl7ga5oV34DnxfHTg7QtwQ/qzY/nIsoilmKDjMvQa6nvsTfx97J3xDvVtfgPuBZUYnE4kjsq5bIdfm7bQNucwFzuf3BY3tHuX8XM2XYenGEUkcM3Rdr+/C22X5+KeW4nPr8G9ol8XYcKJxPVWLMtztIhno8OSV0ObuS8/d7oQQlJGOc+ClTrQQmy2DpPsbP1vo74JxzExRBeCKwYSI3xwpcMmeGNt9SG8ziY7mJ7Sw3AC2k4IvlYeL8br4bAdnJy5Kg6PLDQf572ghlh8jQa6VTX6vuIxFk98kZi1CxPwUqzxjco0ny3YdHrt0ZDnNUU0qdKzh4eH2L17t2jWjLOrLgTUpLwLti8T3l72SyM5v2DBbZ/2XPg6r9uV0OZi4OUjfzInujAE65VJZN2F/27cW5zJqdv8K7QZHQhfF0dgtrXL8g/FjuR00XfGa2LtazNEp/i6ZftjZKRVs2pchpc46oJZoo4uPV9XXIrzcOILUnoJLlv5k9eV8HTw2voyrMOmP46FniUsRdg3ow0mHEn4zH0e2jLH8/nVcTu/hbbe63iQsXEMLtXaKrkAtSEAz00vjOFlS9ZeELDlW+7bGwehHnmHqe9WG25b6RjCWa+3/MSP/yc98QjAyq0rqK/TEFwRyjFwJm9eBW7FSCvkpfhOYbjcnk9eV6K5F45isqp5q4W/G75O9xFmskSYJ96wfbiFi9M/0gefs9alvF1ihnkQtM3qzVuarlyEiU7fjg3i5d7Ejue09JyTckB4ezeg9FxcIoLiWja50nOTCn9HjBghtm7d+m+/DQUFBQUFBYWmAt1/W0fxgs8o/vbbb6f+X05eefrpp8WUKVNEu3bthJNT3R3buHHjxIWCmp1MxpfPC293+zuxg91wpuv3g3zqx83dcMnU6uCM8HbGF0N+Jd9hBwqcgdlTysuW7dzxLlqXhsuhEqWbVzdqRJuEM5kI4byBZ3b0nXETvb68oNHZyMU1tXKAm6IxeWN+AdecG96MZ2dcs7G0UlkQLg9L7Ca6kj2teCKIhK0cyxQdC+9OfTNJhtXPjXfgxGdjOZF3inn58Lr2uPnfOxW3cEicCMcSJ6FWLstiWvEVtM2Jwll9iXEtcPYmvZiXHjcd42S227riiSHGIp6dP2bE7TT5FThTKRHhhdeWL/7kk4oSAjDZxd1B9r0D0Yb81YHm7BVtghs9wnFUPL6G08i1IHG0EK8dA324ZqHFE587x8r4jYXx855chCW9TBWl4sfbBp/bjOLRpIZnFGMSmlxG8YLvUbz44tPZXTJYrA9JZrFYeBBzPsIYGi2MHvb7LT/dkgb9XuvCy8fWahykFDvz+aXslR2VrVMrcOnqQC7Xw2ofjnuJ9O78onS/8j5osyzn4uSrWuEy3tcZvMT/UBX+vEEOWHRRVfhGMrUMj3eTMG3GN+zlVj7+Lbec92xN9cK9U8kFPJBwd8LltPlFvAQ8OghvMkLc+VLm74rtDk5ZcUSHx/T5m4oaLXxsLePn+xc7cX/buFa8B7l1V3yMbwzh4uT6ahwMGHw569mg42tHZhkO6Ex6HBhJRG3CbPwIPz7r3RiMN13TuvOxg87H8Sb0kYN83Rnkj6+HgnIesHmW4d7o0TH8e2Zte6+uxMxkiQcHJ0Cb7SDuI5QwJe+FtqhxeGyso0TBV33wvbu4xCo45/0sQPffJrNc8J9KSuA05HEhBokK/xwOHc8Wgx56U/upoKCgoKBQA5tOd4rQwh8Odp0XKC74jGJTxyqfHsLd037m6dmDmI2Z7o4zaBJ+v7yIbYP5CDdTKNase3UN1+h7tgO+kNI8MDNVQl+GS0TVSXwcmiEHl7Vc2vcWJv0BsfnQUWGKailc6rFrB5Nm9hYBLejfjSnHDEOLJ8+gmdfMhbb0vjdT3zdCManoqULu+9UurrN2WwrOhD44mBNl/kjFmey1RCdTosco/F37WngWNJUk777Ylk5924ThrNE1kQ5G0ZTg17ZZ+eb1uo64TBuyl+voWdoMgLZjj9xCfbdOfQ3aenN5VtHZnWdJt5fi79JUS/fWHjaFYbLT1qO8jSNR4HP2Bi5cIDICMAvY152XrTP1OHt7r9Pv1NfiidtWHE0JKSXM9Vt6c8a0G1GIMGelcd9BWAvx6l/4veGtS/FEKEsZ/h4tFt6ydFag+29nFJtUoHjXXXeJhIQE7WdtyGktSUlJYubMmWfl78js5JNPPim+/PJLkZmZKcLDw8X111+vjQ+s0W6UrZ9PPPGE+PDDDzUR8D59+oj33ntPJCYmntHfMlms2sMe8saSYNBBn2HZBMwSdXXAijXm4F6yMa0wY04iywMz39xNvGx50K05tCV24aWYT47iUz24wkUkV50s1f5RFSqOVdQN4Eatxv1eUb685GVui0uAhWZ++fkNxT2oxmq+cx27dyN+XRO/qY4lPWoS7ULwTddJz9/XddG49Dg5gAdOxeQGZizEZVqJ+HW/QNuL7ftQXyFwP6DlCM9AbwnDLNDX9/Oo67sofGO1JXShvhYiUxJ3z/3UN8oXn5dv7HTQzxfIxasrTLh9ILOEX//Xd8Jry4T0n6hvcesboa3AQV/1d3uw0PvlbbkAtSfp577pKFdq+KgZ/q4f2cY3KDP64d7ZDoJfK4eqcJneeRiXMDpBvstHR/Cb0rYM3PIwvAoPiNCVcuWBswKd7uSjIc9r5PjhV155RYsnOnToIN566y3RvTvuu/7hhx/EY489JlJTU7WY4qWXXhKjR/P5338HTSr8lfOdZUBWH7179xZz5+LszJlCHhQZ9MkAdP/+/dq/X375Ze3g1kD+e9asWWL27Nli06ZNmnSPZGVXVuJGYQUFBQUFBYX/Duv5u+++E/fee6+WWNq+fbsWKMpYQU6Xs4f169eLq666Stxwww1ix44dGk9DPvbswbqr4r/Oeq4NV1dX7cuSWcXakNnEtm3bnrUgbezYsSIkJER8/PHHp343YcIE4ebmpmUZ5Vcqs4xSAPy++05m/SQLSvp8+umn4sorOeuwNtvqg9X7YOm595cPQf+547gA9Y1dcFnLK4WzMfcF4JFmLZJ4OeV7Tzx67GpfXvJM9cKMWr+5z1JfJ8AclygZd7/Y/edOMXJQP7Fo5RrRrkNdEV1/J7xLNhZwTbICH1zm8c/HorgSOw2xjWJxaq9twSSLt/dxDba74ni24vqVeAf/STze+UukJgyHNrMDun0zwqM4zCueokUa1ujrs4hnwTZOxOdOSgAXXI7agzOZuo74u9DsJswQt3jzzD37Jn86wBnzHUJxxrhVOWa8S8yv5O0UPSNx6XnAY8uo70u34AxLpoNxmEOb4baWcE+e2c8px9f/g/OxoL5EeiYmfs29BbPaJVIL8WdqG8z1LBkrOtqX+7bKWAtt5S1whlziRCmuGMRu+Zz6FvfHFZQqMz6jS0qKRdu4iHPKes7KONGg15bPDwkLP6P30qNHD9GtWzct8SQhORVRUVFi2rRp4qGHTr/HT5w4UZSVlYn58+ef+l3Pnj1Fx44dtcTUuUCTyijKAHHRokWn/X7hwoVnVYRbZiiXL18uDh06eaP/888/xdq1a8WoUSd7SlJSUrQU8tChQ0/5yJNNnhAbNtgPwqqqqrSTrPZD4Z9DZHS0mDX7Q+2ngoKCgoJCYzOKxfXu5fL+bg/V1dVi27ZtdWIFvV6v/RvFCvL3tZ8vITOQ6PlnA02qR1Gmb++8805NT3Hw4JO9YTKge+21185af6KEjPLlwW/ZsqUwGAxaz+Jzzz2nzZmWkEGihMwg1ob8d42tPl544QXx1FNPnfb7y3xzhbeX/UyobTruM7zr8Hr+ISxjoOnLKt5Hea0FZ9FsLfgueSLRIlmcy4O0fr+/Cm1/DLiH+vaOwru7knKzMHr4iuEXX3Hy3/XGkB0rwRmF1oF8A1JdhX0r1v6lAWoP7QdNhDaLE+/AL9LjHrXbu3AdxZXHeM/PJ6Nwxum44OSeaFfcZG/M49nIMk98XmaWcn23JE88BWXdnbxHrcIdZ6Nic7n249oY3De05wAfWXlrBLYbs1Oob/URXIaa2LnuTaY+yr0JqQwnORsEXxt+gUVPcNmmFUdwb+3UKJ4Ft5CsoWX+LOobPBrLunw+lEtc5X2Js2gbjvERngNj8XVa9Mrd1HdwW9zP7dKZZwVTo/tDW8zRTdTXL6I7lXpjeHU1PqdbheL1u6KUX0dnj/Wsa9DzJGRGsDZkWVnyGuojNzdXix/sxQoHDtjP3ssY4kxii7OBJhUoyjnPMnKXQdszzzyj/S42NlbrJ5w0adJZ+zvff/+9+Oqrr8TXX38t2rRpI3bu3CmmT5+ulZsnT57cqNd8+OGHtUC3BjIQlSfbCa94UeJl/yJ5az2+sd7e6xL697Ym4oBu4tFt1PfjXfhmP9WZl2IqEjEb00TKpRLOMThQ0DsgURzKq6RlHLm5+PmnH8Ull04QQUF1yRzZZfgmVEQCQYlAHS7zVl7MSQWW9Xgudk5X3r7g70qKBeu5SHh/PScz6U2YhBERzBv0BZkVbA7gbMyx7+Gb1PLJXPg68mZMdjj85a3U1207Zhgfa4WZqRK5J/BN7PZgTJKQWFSBP9PcPfy8e2QILuP5//gc9fW8fBq0vZ3JiU63dOZi7boKfI1XmHjrweQA/H0tLuZBSKweX8MJA6+ivnlv4hafoGv5uRNw7R3QNsCbb9jKCXO5+Ba8aZYIFphkpSvl6gIMJWuX8CdMJML30Zg9LvFcDF6z9Bm45aHYuUzcKc4tbLaTj4Y8TyI9Pb1O6dnFxUVcyGhSgaLEbbfdpj3kjV/2DHp6coHYxuD+++/Xsoo1vYZyCszRo0e1rKAMFENDTzLhsrKyRFjYX71E8t+yj8Ae5Il0oZ9MFzKOHzsmZtx7r+jevcdpgaKCgoKCwn8XVpuNiufXfp6EDBIb0qMYGBioVSVlbFAb8t81cUR9yN+fyfPPBppcoCghg8SDB0+O/JHlYXkwzibKy8u1PoLakAdbNqFKxMXFaQdNlr1rAkOZIZTsZxnEngn8XA3CGwyHfyEW77BtZj6AfeKduBTfv17ptT6mxmJ7jnM/6ptViHf2YV48UD7sfxG0rdzKtfCe6411uH45XCGOpJ/sCV2bXixOePLxaLXRNYwTIT7dhcu4l215mfruGYMzGV31nJDyZy7OCgZ1xFpnEuF7fqX23T6doC3GlZNssshkjriNfL6CuZrIySTxGe8ZM3G57cdkLhc0tAPW74s4xCfkRPnhaSNpPlg3TiKdjGnsm8DXtKwyPPXj0KC/Khf2MMgD3+CmhfBRmRYHzMuqNsOgLf7QIv7a8VgSaKjgZBZx8A9oOt6SZ4XdbifXaRFvPaj2i4G2pFx+DbcPqDuCtjYCnHjQ8uBy/NrPlHPSkF/hz9BWddXj1De7HF/fvr58mpCwYt+KeEyCLPsH+vltjhXnTj3vTODs7Cy6dOmixQo1U+ZkHCH/Ldvo7KFXr16aXVYxa7B06VLt9+cKTSpQlEwgyRT6/PPPTwVtMoCTZWcpXePubn8U3pnioosu0srb0dHRWulZUtRff/11rfQtIbUU5UF89tlnNY0jGThKzSNZmrY3cpDBZf9K4eJp/30XthgC/Q6SUqvEhmux7qD1CJ6LLKHzJ0LAhVxnLYAIth5K4DpQpaTMO6olX4QMxfjvji86JHaUnuyPGVi6XXQqqhs4ZLTBgcKSI3y27cTdH0KbaRJnpt8zcx20/d8EPjrwlfm7oW0qGdEl0SKG3zj3ncDlwz3ZnB83sRKXjyt78XL62y3wOb3TwW4/zhdvQr5eir8riQGxuJyq9+Sl1jU2XD4OJqVFicntcGb7ngWHqe9lrYMaVdKUcDqCNThtRr4RWOPLb1bBRXij2DKM9/tak3FLjKXDSOr7f3m4H7BTGr+GL2mJg3KLD14LJY6RucqdnPmGdPFRXA1LLuDNoi/0xxsUY8EI6msIweoSe7N4cFtpxudWmxK+ifi2HAfVqfn481aW8f7kswGr7eSjIc87U8iWM1mJ7Nq1q6adKPkUMpaZMuVk+4iMXyIiIrSKpcTdd98tBgwYoHEvxowZI7799luxdetW8cEHfBTt30GTChTlF/7HH3+IefPmndJTlGxkKcAtpWpkr+LZgAw6ZeB3++23a1pHMgC85ZZbxOOP/7XbeuCBB7SDffPNN2uC23379tUY2VLCR0FBQUFBQeHCgM1m0x4Ned6ZQsrdyCqojB8kIUVWIWWsUENYSUtLq1PBlKorkh8hB3w88sgjWjLql19+0SQAzxWalI6iLDFLYe2BAwfW+f3KlSvFFVdcoR2MCwU1+k0pxzJgr4N3/uFG73TTq3GGxdOZkxn8rbhB/1CVA42uYryrfCqVj/DrGYOzoN3CPRtNZgnxcBKpR5LFUw/fJ5544VUR26wuIcOXTKr5aBufcnBvB8yKNBTycrnlBGYBfumCWbwSzfxx9nz6R5up7yWDOSFl+PN4BGCX7z6jvjnvPQ9tITdw5rrZD0+MyKniZKbkAnz8O4XwSkP+E/jzhj3zPvX9ei8uH/eJ5tnIuXswi/G+zpwIYVmFiVC2EZyAwW4ILgV8DNtRJ77uRBtw9md3OV872nrh0mSWhfsm5eNMWKsfeGZ/47hHoS3Mk7fLpBXhvzuuOW6HkcgkZVy3Ofg9SXjGkOMwpu7ksvpwycNjR21O/PNWe2M1hpkb+Ho3vjWuCrWqwJqzxSWlwr/j4HOqo5hC7sP1nx8XGXZO3su/iSYVKMrSstQkatWqbplh7969WkpXZvguFJwS+pw7U3h72F8EDR2xnMQBKydkfLUDzz5+LoH3bFVEdYY2V0dyISYsFNynkEsv3JGEF79HhvJyainpu2yespT6mtJxQK4f91efyJmW8QqjCENQHt9vsIi4z5Dx1LeIzHrefJzLScT58ZtutAcOypKKeVmzhQ5v1iw+XPJHtwn3MJq7T6C+TuU4YBv44cl+ZoQV07DA/NhPedl6/lTcz+mUvpP6ChccwJYF4fKghEcW3pD9Vo4Dbokxwbjf74CZj8p0ID4gEj2tjRoNKqEjs7G/KubnzuUtcVCWWcHP2RB3Y6NbT0aF4Pe8IJNvyPtG40Djnl+5usRHl2KZqkNF/PNGeuHeSO8jWIxbYn8QVtNo7s4ljFZl4ffVPcKL3itjI8LOeaDo1YDXLmmigWKTEtyWzZxSr6j2BJaKigpNn/BcNnoqXPiQWlbFZeXaTwUFBQUFhfo9itYGPJoimlRGUY7vkwrlUktRzkusmZoi+wIXL16sEU8uFNTsZJ6Yt124etgvqwaTssd1ep7pqGiJs5FVHzxCfd1DcYnY1YGYa3U0zkZWfMpLQHtHYN1Bp5s5k7fL56TR12YVO3bvFT1GXSY2LZwrOrWre56kOeNsRQVp3pbQPXhShN0e3F//hvqGG3G5VF/Os766guONYi1LtPbEDfiOdv6DArivzow/k+0Iz7ClkfF/e3N4tWDE8QXQZsnjQrXHV+P3Ff36F9Q3g7C8K8lYMgkTueusTuVEiJta4WykzsQJCcf1+Pr+7SBv37mtBSe7pFlxluX9TZhwJvHMYEx2MCbxqRTFzTBr9otd/PgPIeP/El05aTC1GmfnfzuAtQ4lWgXhdhqLg9v2WD2uguRHYPa4Zq/Am+X4XK6xm/YRJu/F3Io1JSWygk/es+2hqAqvOaUlxaJ786hzmlFMSjvR4IxiQvSZjfC7ENCkyCyymfPw4cOaGHaNqrkcni0npkhNxQsR1x/6THi72Q8IPSdgqZ3Mt7HEgYQPCRR9uvHsqz4aMwiLFnxJfYuSGk8oijiEe2vCf8OBgESJBdfEPLb9JKxpJ8XLrWn7hdW17o3U0A4HivFbeaBgeAMHqLkO6nQsIIvz45pZv+biYsH0AC64a3HhZbzBpXhucmFY3f7g+hj/IS7FJ0Zz0exPwvDNzyeKl2KzQzGj+oudvM90xitYgLrKwm/Y7k74OESX8lnf+f54usZNbfhNSFeF2wt0x3nZMjhpF7Td3o+X+A/dy/sfjz7yMbTd1YcLrlsX4Tm22YP53/XX4Q1M/xjeK2gix1hn4RujOCMOuqbzIUbCZsCl2kNm3qNa7dsN2pYf5JsMFoS6x+DXlYj8PzwUYXEuLmlLDLXh/tUqI5YhMxkdT0z5u7D+79GQ5zVFNKlAsaZP8aabbvq334aCgoKCgoJCE4DtDCezNDU0uUBRCm1L+Zr9+0/umiWxRQpXSuHtCxHXVY8QRr393dSXTljfa/k4Low61oL3PtXt8RxoCVcjzpIYHWgDRufgUUxWZy5enemKySz6MkxWkPCuxBmWBUFDRHLOySzKer9uIiuoLhEk/SDOwPXpdC39u63ccXvA8v08s3dlKC4R6gt44//dbXCZzuLB2eWGfM5sLduB54j7u/PZtyv74HLb8mAu71AQgEtxXga+l68w4axDhzCenTMUY2F7gy8RAZd2Uj5+P4MTQyYHkxZynsgSKwtwBWVgHCbnSGz3wVmj6Dfvo76R735P7fF6kp3bymefv+o7Dtqup55ClFrxrS7SQYXQQGb8GnL5GMZtBpwlL63iGbbeKVj43q0TngMv4ZSNs9WX5HPR9PS2WOs3o5QTUoL98Bo+JIxfo+Zlc6Atsg9+T8XmkgtaR/FCQJMis/z4449a+Vkyn2WPonxs375dG7EnbQoKCgoKCgoKjdFRtDXg0RTRpMgs8fHxWj/i008/Xef3kgn95ZdfiuTkZHGhoKaJNjv1sPD2tp+lsbngDIvxMJ7qocGf9KHlYyKEBj8scbPJwnXUOhDNuhQy3s+RvIK+Ek8LkTgssFxQabVFmE0mUVJcJLy8fYTRqe5Of0cGHhHl6cyT8tE+WGC9t+lgo+VRRBWfzHB09jvQVv4A7xNtYeNZkt8LcNawfwzvnfLOxZ/ZdGAL9S3vg7O3M9dzIsTtPXDmb1UqlzgJJaMl5+7k18rDRJOSZaokvtuLj8OUjvgalHCtwBl2qxs/RnqSfU8y8ax/opWfO8KAr5dVRVwLdZArfu2ShVg3UiLvkodFYxHqiTN/RWRalOabjbN3VXs4ASdvEO67XH2Un7OXNcMZ5QwzJxw5k97p4GNcwuzRNHxePtWfn7OPrsLX0hND4um9MiIs9JySWfakHG8wmaVtXIQis5zPyMjI0Mbd1Me1114rXnnlFXFBQqc/+bCDbVmYcdfTlS/o601Y3LR7wQ7q+3AqvuAfScWCyhLuYy6HtpYFnAVYREYWevrwm8y4exdC294X5HxqvRABNaXAuot/Zx1m1OrK+YK95eb/g7aFs76lvoLEgp4u/NLtPRF/z3oLJ28cf+clah91Hz7G23M5C7T9tuXQ5tQTj0qUWHYEM72n946mvidKca022IPfOPsJvMHsNgrrVUo4kQ1MgZ6X6a/vgAlL2WSWs4SJsIujdPzc2VGEv49wL16E0pn4+zJ743XH38GM+RI/HCw4+/KbchgJ9uYd4uSOxAC8YYvx4efOXi/cTmHq3pr6OlVaGi30XfXTTGgzjH+Q+gbocMuL2UHbwowYfG49sZq3tDw7ECcvlqfhzXp5ack/M+vZ1rDnNUU0qdKznMiyZs2a034vx/j16yeDAQUF+0hOSRETrrpO+6mgoKCgoFADq83W4EdTRJPKKI4bN048+OCDWo9iz54nR5xt3LhR/PDDD5ro9m+//VbnuRcCjEXHhdFqP1vWPADLZ1T/wbOCvTphSYif/LgW4qWP4kZqtyV8yslxsksO1+2lvkyJJI+8rsSuoWQs1dYiUXT4qFiwaLH4v3E9hS2vLhHE1vrk3HB7OBGItb8k/BMx4SgqjGdBfV3w5IYMkiGTSPLA8kcuBr4/tN0zi9pX5uKMg8XG39c7gbgp/TY/LsvjV4YzB55VPCuU8Ofv0NayFZ4moaEcTyrJJDqJEpGuOPPzyz6uSTi5HW6X+Hk/z767OeFzp080J9H08MWfKdVB2TLbE5OoJMrLrY0a0Sehq8SZ/ZSBXKMvPhkTsC6txNkqiRPuQ6Ft8wks6SLhSq61DWlcC3V0i2DRWJgvw6X2agdrpb4Sv689Vv6e2hVg+atnwnlrUTUh/gzzxtdKsY4fg7OWURQNe15TRJPqUaw9OJtBp9Od9xM4anoj8ncsF95e9svIlWHtGy0E7UH03ZyS8KIqYS3BC4kulpfi7tuES5PPjcAaXI7mzL5/lJdibqomPZudRokdO/8UvQYOERtWLRedOtYN/lZlmhs97u7qt3Ef0roZvIxjISzAY/3w/GGJLcfxza9/DJ8xPOj/llD73pfJRsLKz7uuz+HvY+tIHuyJbhdBU5Ue94JKGJdhPUtjX1ymlyhywj19RQ5uuo7WIYYIT7yPP1zAb7qVN14Kbe1+nE9939+eAW2jyMZHIoqMf9PeF9nt+WRi/UaJjK8+gbag2/iQADZ60NuF3zciqvD3YfHlm5vn1+D5xo914HmaQnfc4nOAbNYkOm/DepVOAzhjGrU6SSzJ4RuFkRa82X8jn28i7jZsh7as1qNpX2Cbc9QXWHMf3p58THh5NaBHsaRYdI6PVD2K5zOsDm5SCgoKCgoKCgpnBFsDNRKbTNqtCQaKo0ePFt98840W+Uu8+OKL4tZbbxW+viczJ3l5eVqP4r59+8SFhnSfFnAnE0XKKQ8e4jv/V0fjsnVu1MmyfWOU+ye8w5l8sybh8VHODpjLme+/Cm1X3vcm9TWk4JLJoQqjOFZ1slQnf3pX1L0swr3wZRK15Sv6dzfe0BvadPknp8EgbO6E1eF6l3LGdDwhtv6Rx7Ovu0biLIgGC86wZlt5hnXn7TgDUxSAy+USvxE9yytzf6C+uzpdB22dyzhz+f82YLbtfYMwwUIioRivOTYHGcWq9biM59lnKvV1+RRPZkpyoC4wPB6vHRHLeVuCsT8fpelF1g5TCB9VsnnCU9A2xsDv0C0PLYa2r135endtKM4aO2Xsob6P6PAo1cOCZ7Kb6c2NmhYjcaQPZky3NHNmOlOQGOHLGfPmXZj45U3ISBK6GDzetYpUyKqIJvDZgsVmczg2seZ5TRFNIlCUc5zlfOcaPP/88+KKK644FSiazWZNiPtChJ+LQXi72u83shCW8PR+fNRS2cdYkHvDwHup76jMRdC2+tZh1FdnwSzhFDMPbgs34T7D9g4El7+x4LGDfV66TUSXVYhH+ncS0XNnCteFdYOdkN64DzGJLMiORrhFuvKerOBy3Ge2voyPu+sahlnviWSWq8TQfVz4ekoYpmNPbob7+SR+KMQBe1sX3t84MQuPaSzpd7raQW10JKK8Fh3vu5raA5dTHd0XKrYsgzZjBL9xurTErQlhDiaSbszEwWC8Hy/Th+dgSRfLiBupr560h0iUhrSDNo88PKJRYpwT7kXbUoKvb4nOrfCs56sPc8kXsx/uUdyWzYPuwLlYQeBwBB9sEOyOS5dLDvHNzY3dIqHttb18g+LmjAX5L2vNrxXjHlx6nno1H+9p3Yc3RnFheLxjcSmf8342YP2PC243iUCxfptlE2q7VPiHEOjhJm7ofGFO71FQUFBQOHewqRF+CuczFiUXCHdP+5mnbi3xjjS+AJc8JEwtsYbXyKO/UF/zIFwSTSvmO+yCCpxFKzdxDb7urAnfAdt2YiXOGlifeU8UFBSKFatWicEDBwo/v7pkj492YZLFlHWz6d8tH3EntJXYeGN4LBEYLzfxS/enA1hwuV80J7OsvBOXgCQMqbjpfEkuz0ZeUrwC2nb4jqC+eg+sO+h/fBv1tfoRIfgk/HkkfizA18pjRFBbIm3QXdAWTsgqjuC2gxNS+sRhUpkunYuTmxIxy9+6kIu1GzpzxQS3KlxR2GTFWTCJTnswuavjCH7e6YpxNjJ3Bc76Suzxx99HQQVfd+Je+hzaxmby8y6tuhO0PVb8E/VNsUyDtk7hnGRRbsLVmVIHWpcJF10BbV+c4JnsMV0nQJv3Tjze0VzGhw+cDViFTXs05HlNEU0iUJTswfoMQkeMwgsFzQPchSdgPecQ0V2nAM4+rnwRl0TC3+JC0OlFOIBJ8OYMwq/TcZkgr5wHmc0Iw3j+IT7reUrHMZQReyQ5XVw74zWx9rUZolN83Sket5ESYFUGLg9LrCVCsf2i+YJ923ys6TitXzPqOygWB4OBVi4HYjVy+RRLdEdoG+zEbwajluBgYHECn31tIyLyaUH4puqoJBTdDH8eiRcs+DqrdLDMNHPDvjMWc83OvqRX0M2P68IOXY8DlMecMYNU4vYw3JoQNRj3ekqkmsk0IRlo3Ir78uZd/zr17TgKS+DoLHyTaSXzzR+K4f2ec/S45WWHP++rXJKMN5mtHcw2P55JZF/a3UB9L8rdCm3Nw3mZXl+BexStyXzily26DbQNDsSSbBJ+xXgDY22Fg3VdyT8guG1TGcULHrLUfP311wsXl5NN+pWVlRqZxcPj5I2ldv+igoKCgoKCgkJDYW2gmHZTFdxuEjqKU6ZMadDz5szBpYvzDTX6TftT8YxJE0mTsHmdEsGlRxs963nQEtzcP2kAz3T5uWHfpFzelHxPV5xhyajme55wKxG3NTiLHX/uEj0HjxAbVywWnTrUzcbanFwaxQCWKNHjDIuXhQvF2pyxr6EIa7tJ6Cvw593lwrMgif6cFZ1ejLNkIR78ODgbdI2emxuoxxu+EyZexg/bORfaBm/h4//m39kL2jwISUbDblxqN4bwv7vGiI9Tby9+7li88Ki8wa/zrNDq0fj46vz5LPfSpd9Te/kELAQdVMFHS5o24PJjcq+bqG8LI74ebAe4UsM8vwHQdlEU143UVeM17btjvBrRIxIzjGP28Pagfc3xQAlvIuQvcaIEX2e9Sni5vGrfZmgzjr6N+m7Ow/czFyOuVJWWFIshbePOqY7iqr1HhWcDdBTlexnYJkbpKJ6P+DcCwOPHj2tTYBYuXCjKy8tFQkKC9j66dj1ZppTx9xNPPCE+/PBDUVhYKPr06SPee+89kZjIRaUVFBQUFBQUzh9Y/+MZxSYRKP7TKCgo0AK/QYMGaYFiUFCQOHz4sPDz+6u36+WXXxazZs0Sn332mYiLixOPPfaYGDFihKbl6OrK+7gaSssPdcO7LGMK3tlJWHJw1vBE2/HUd+7N+O/uzeaNxa2DcJZsvD/vnTtC5GLcnXgG1eSBx6GNmb1ZlGVlCs+IRHHnokzhsaNuRm3Z5US2p5iPUvMjEheVW3kTvdPAq6DtqDGU+oaF1e2zrI3Hv9hJfX+4lvdOHSCZX8NTuIleIvaZmdAWWsQz2a+k4R6naT04EcLS+0pom9mcT7nwLsDacOUBCdTXcBz7Pl3GeyM3HN4PbctG80zWsztwz95v7lhmSOKRY7j/7bkoToQyX8EnpFRUYTKEzsxbhLIG3AJtLWx8HN5HSdjm7o773ySuLloLbdbjmJwjYS7CvdOXX4SJThLGZCwXY+nEiV/7UnHGOcyTVwwGmPF5Zw3hFaPb9+Be0Gct/O/2dM+EtlJPnMkuNvLe9rMBawN1FM9loJifny+mTZsm5s2bp02hmzBhgnjzzTeFpyceBTtw4EDxxx9/1PndLbfcImbP5iTMJll6/qfx0EMPiXXr1ok1a9bYtcuvNDw8XMyYMUPcd9992u9kKjokJER8+umn4sor8U2rfsp73YE0mPJ+fAG+oN+9jN/sGaHB5MbJDIfy8YIe48NLgAsO44XzqkC+6Frd8fvaXYGJDhJtAvD7euYPzgKd3geXCL2ITqJEEWEJ7sripfb/+xYHdCvv42SGZAeiygwtnUsafRwyKzgrcsURfEOvdDB28oZW+BifMPPNV4QOf6YCIxcR9iTH+Pk/uGj6U23xZ0p1wcG8RJQTDmBtW+ZR37JDWDc29/LHqC/pDqDz1iUC3HhZc3EyPv4mB8LJV7bBmz2nE3z839dFONBoEcjXjo4elY0+d9go1SP5nIAT6IHXrBZu3HddLj5nWwZyEc6QIqxnudHG2yVYO1RRJWeIj4jFAU+hSU9H+DWPCT+npeclu1KEhxdWXahBWUmJGN7+3JTBR40aJTIyMsT7778vTCaT1nLXrVs38fXXX9NAsXnz5uLpp58+9Tt3d/czfm8NG46sUAe//fabVmK+/PLLRXBwsOjUqZNWYq5BSkqKyMzMFEOH/iXUKk+2Hj16iA0b7PfDSMKNPClrPxQUFBQUFBT+XVisDX+cC+zfv18sWrRIfPTRR1oc0bdvX/HWW2+Jb7/9Vpw4wXt7ZWAYGhp66tGYAFaVnhuBI0eOaP2G9957r3jkkUfEli1bxF133SWcnZ3F5MmTtSBRQmYQa0P+u8ZWHy+88IJ46qnTR1TF+jgLb2/7O8u53XEwue82rGclsWgGTj1f05LvVjtU4mxFtS+XXphwFJMKlrhfTX1HmHD2JqWcZ2dCPXGp7p4+0WLXn3+KUUMHiYXLVor2HepOYskjk0x8KnPo3/Un2pCdl3xMfWdNwo3/bifw9AyJL/bj3fmzA/EYPQlDHv9M1q2/Q1teGz6WrGeUT6MJWGI7buAP64k12CSyKvHiuI/JkMgy7yH8fbzYlpdL9xlwaTp+HT/++l4XQZuuZQ/q69kLfx9eVXwTWuGKS/w7snhrSZyOf5cj170DbdZJT1JfnRlfS6neWOtS4scVeGLIt9fiyUsSPx3Emd0JpuXUt7oNnlQVWb6D+paH46pBsgMO1UAdrjYdt/FqU0UwHjzQbTvPZOe2wdJLhVUOiD/bsDZo9ZKl2FZVfd71KBbXS/RIRZYaVZbGQCaY5KS5Gg6EhExEyRL0pk2bxCWXXAJ9v/rqK/Hll19qQeJFF12ktcHJ4PFMoALFRsBqtWoHTI4KlJAZxT179mh1fxkoNgYPP/ywFnjWQJ5oUVFRwqUwXbhY7N/0rVFYK7H5jfyG3doVlxfMm3gp1uKHxzjpvXmvUP5AzE7szmpeUldwIS7FzPLDwYuGLFwSK927R9jSs0R1dbWw/fquENvrBvixkx6AvoZM/l3t88E3oRYd+ZjFIA+8sFodlNqf74wv7YxqvmAHB/G+uwxPbG8n+LzuZbn4bw/z46V4Wwc8Sk1fyPsbg/zwRmKwF3/PA1xwr1i690Tqm0gq4lXDcM+dxNFSzKgP9edL968HsCblVQm89OheijMU/QTXK30viY94C+43HdoWLeBjVt/xxqL5fv35uvvRRDw60OCgN7ZnFGaQZwg+nzxsLw5wrPHdqW81SU9Fg+RBDUq98LqzisxMl+gegTdzd+zkrPerXbBuZIdQXrrVtcaBcSUZLlFVUizEq1/R1/6nZz1HRdVdbySx9ckn+UaIQSaYZPWyNoxGo/D394fJJ4mrr75axMTEaK1wu3bt0gi4cpzxTz9xwfb6UIFiIxAWFiZat667g23VqpX48ccftf+XkbtEVlaW9twayH937Gi/gf3v7jgUFBQUFBQUzj6sDZzjXBPap6en1ynxonu75Du89BIeflFTdm4sbr755lP/365dOy0eGTJkiEhOThbx8XyqVG2oQLERkIxnGZXXxqFDh7TIXUKynGWwuHz58lOBocwQyhTxbbdxLan66P1WkjC42E8TL3gEj8uKieUlYJsJp+t1Xfjkhh+P4kzHZRV8t1pkxWUtDwfEkJfGYF25Ldm89Nx5y189pPVReNUTonTXTiFe+0qUjrxZFLavG8z7ZWJSyb0HOAv0jXb4Iq/M4tnIG7fi0tSy8TyjeNj55LloD4EOGOKO2KfhBnz8M638+0jwx1mSHCf+mQLNOFvx4Bb+nm/piRvp/T15Kd41Ix3awvS8FGvIx9dDnic+Rtr7IsSQ6b/ym8e7+oXQticETziR2JeDN6xjEnFmTmLqHnydSVS1xxWFxAB+/I06XC7zTsPZRgnTEVx65kqoQpR+i7/L5m/gUrpEdgLOOAZswiQECcse/J6dJ91DfdN1mH08OI6TFQ8Tks28GK6YkBmHM5kz1/BJRI8OwYFLEGlLcTGf+zDGYrVpj4Y8T0IGiQ3pBZSEVzkshKFZs2ZaPJGdXVdhw2w2a0zomsRUQyD7GyWSkpJUoHiucc8994jevXtrpecrrrhCbN68WXzwwQfao2Z84PTp08Wzzz6r6SbWyOPI9O/FF198Rn/r5kvaCDcw4zbcCQd7GQG8DyWIsJ435HPm4mUB+OZX4MPLlu4v4JtUyEOvUV9DPi6J+bhyNp5zcyxFIkeb1pAT5c/6o05/qMIX1E09cS+g9toHcU9PkgOR4KU98OddUY5vBBIx5J67KAkHXBIfr8IjyzT/9tge2nkU9S34/AVoS5rwOPUNqcQ9qqNa4b4qifgqLDD/cSoviV007n5o+2Efl0dqGYillYaW8z5TczC+ll67iH9e13y86Wp3fBX17RCO/27VIh7c6MZyyRe3NbhEONfCZWrC9+K+6vLrn6W+C4vjoO2maN6T3bI9LokWuGImtsQqwvK+ov1A6nuM9Pv66XmbRnTKykYFrxK9/XDorO+Axccl/F3xvePlgbiEL7GsDRa2r/h9EbSVl/4TI/xsDepRPFMRGSmtJx+O0KtXL02Pedu2baJLly7a71asWKG1wdUEfw3Bzp0nA/3alc6GQAWKjYCkpP/8889aX6GknctAcObMmeKaa6459ZwHHnhAlJWVaalfeYAlS0myls5EQ1Hhn0OzxBbi11UbRVR07L/9VhQUFBQUziNYbI6loWqedy4gW9tGjhwpbrrpJo0LIeVx7rzzTk1qTyagaoaAyLLy559/Lrp3766Vl6V0zujRo0VAQIDWoyiTXP379xft22N+gz0oHcXzFDX6Te//sVe4edrPePSLwWW+iCN4RymxI6Qv9p3zEPW1kibrkOl8Z69LxkLgRS2GUN8TpLm/uR9v7n5+Nc4oTdv3PvWtnPwMtAUbeMkznTD9fMnuW6KarDqBFq45+VsGzigNi/Nt9Jg9ifxKS6Pes0ROOddSY+hcsBXaSuL7Ovi7+NypNPP3HO+Lzy39yk+pr6EnFq/XHcGfRyKHZH68F/Dsu0uLTtB2MJJnhRhRovcTXCT+vdtxVkiiZwEuEe95bhb1dfXBJfGQWd9S3w+2YsLKjBb8+Fu8cSZMX8GJUNVE6L+sfumiHnwY58zKC+Y51XhtcSQuwLKCQ2aup76rr8FkJpMDkpxTHq4Y6Eqw8kBxaZnw7z76nOoofrPpkHAH9+H62c2rejQ/J+9FlpllcFhbcFsO9agR3E5NTdWSVitXrtT0E2Wf5LXXXqsRbWXSShJsJDv60UcfPeP3pgLF8xQ1J+ifR44JLyC4HUbm6i5L4QvYKN0haGOlVom2IbjcmujJFz+dCQdWaWZO2XcjPYylRNhaYnc2lu0YfehrkZZTIF6cu0w8dNlQER1Ut4dnTdvroO+gAr5w5rTA8hihmXxuqjkS94MVWnlgHFCEy8NLyjkztW8UX0QKSaA49Rvew7R4GL5LlUbg4EaimBxjR6tYiBGfd6mVnAUeSq6zUgc3+6eWYHWBN/RLqO/ubrg1oZMf/8CvbsXs5Fu68Z5M1iv8wXY+Y/zW9rz/jaHExs/pcpOt0ULfTOLqYB7vM43xxVWg+ILdorEwh3NJn8OlRDQ7l28yPijFa/gtvrw3ujTqLwmW+vDM5cx0sw9mRRsL+N8VenydmUJa0ntlSGjoOQ0Uv9xwsMGB4rW9WjS5Wc9KcFtBQd5ISsrEZ8s3az8VFBQUFBTq6yhaG/BoilA9iuc5tEwZyKQUVuIsSYQ374W0WfHO/zJ3zly+eVUWtE3szLMV/fZ8CW2Wvn9R+c+UjZdbzkVXrYSx9obvOHHCSzIM3xRfew0Qq3zb1LHfF4L3U6aokfTv+v6KS4Qbe3IGfLdqLPTr6kBKaXkFzhquS+Fkli3pvKx9Hxlp+M0knhUUGTjj6GrhM5fdrNh+XPBRaroq3PDezMLPnVKB50gHOOFMlSOmfqmlOfVNS8XHwdOFk6geisSluhWZvPVgUAU+RoPjeOP88nb9qb3LnzgD7+qg5aHCjL/rTcf5uTP9I9zysu3uROo7/ke8Hn7nzrPCboPx4IP0Cp4FDfn2CWg7fNXpwxlq42ZfzNSv3snHHVaEnSRL2IORiHFLfLcXn3eTQvg9Kd0d94cHkfjLQedIk+hR/LehAkUFBQUFBQUFhbM0maWpQQWK5zlaiBzhLezvlq0+uFF6xhLeD/LSKJzNcM3aR33vGYCbklscWUx9DxJJGJuD7VhpFW7gviiaZ9gWHcNZo/s7eoodOnfxrtz1NncXnTrUzdZYSfbG9QTfnR8ahOVCXE08G7WlGH+mbh5clqVDCD43+u3jEie5/blsj3MxJgbwLjOZgcUyRYtT+Gi5i1yOQVu0nvfO5fjjfrDAiiTquzwFZ/YivXiWpFMA7mH0rOBTTsY3wxJIPyfzUXnNku3PlJfYHcx11wb54kzXriwuRTJxrQNSyT6ccbqxBf8u41LwZ4ptyclMm4fh66V6Db+G54bj3umC/lg6SWJXIa76eBv4euc8CZPovB00jeW54ezcmthLqe9Fu36Dts2RuOda4toYfL4fM3BFCU/SG1tRo19mB5XEdrZgtdpoVar285oiVKB4nmOPJUB4Wuw3xXqW4wX9hh5czNc1cw+0LTNxTcKBKb9CW2m3y6hv1HfPQduW/ndT30F7P4O2PV68bO3jigkLlvXfioC8QnHfhGEiIG2LsJTVJSA4J2ApgRUGXorps2kOtO1ofy317WnFAUzRj3wEU2BvzCA3D7+R+oYf4eLF5vie0Nb7hTXU985xOJS8LpozOW35ONg3pWNylkRQDPaNfZb7bm6FiQO621+mvtbVn0Pb8nh+wx5mxUHVJTG81J4Xcyu0TavCI78kdBW4ND0+hOt36rIdzAm34WDwuJULbkc64XPHZuPBQmFXXAL2N/Oxo5Vu+DMvJoGvo3O6xJ0H7B6k1eL3dN4uYSLKFBM88YZLovIATjK078wJh7atWO8wsDufx35kKraHffCD+DdhbWDpuYnGiSpQVFCQiAjwFU9PHvdvvw0FBQUFhfMMVlV6Vjifcay4Srhb7ZM4xvphCZyKpXxIum0I3mF76vhpUd4dZw3ddbyceo8PnjZwkYPtmDEIE2VMDrZ7n2/Gu+S+bVuJkrJysX3fIdG5dXPh5VF31/yzGZfaR8VwyQRj4ERo68p72YU4gctWuRP+j7p6CkxY0VVzOZDsSE5Y8CZiCRun8QzrFb/iaTPXCV5ON7XFZa+xy3kt7q32WGro0Aedqa+xAE8MSXMgj1PU9S8R/voIqebXysZKPO6ydxFvDykNwCX+5HJOZvEh00aa23jWtyyIH/9JZAiFaznPzun9cQYuW/BsZHAZJneY/Xn1ZVM6LrcnBvAMm86U02jN0RMVeB0O5h9XxPvhzG06qFDVILKXd6PHHe6JHwNt7Quwlq1Ey7dPTjazBwMhwRlLz71ShcVm0x4NeV5ThAoUz3OEeTkLTy+XM57JW3EpF812teDFz1rIT/ZfD2AW4LL9/Gb/0SWYYWg4zDUJbW3xyKuOHm7873bDpZqjvt3Fnj93inE33Cd+W7ZatE2oe5Md8AUeLffSiVvo332wH74JueTwkqclBPeRxtp4j1qZC2Y9u+n58U3O5AzS7n44wNlSxgPn7yfgG5iuhB9DnRmz3r+8lrOtA1JWQ9tXx+qy3OvjytZ4gxJo1TVa+9HdwWxzVyMutS4+gdnUEsOrcR+p/7yPqO+KgfdCW/kkHPhKuH+O21IkWjrhza2+nJeALR687E2RmQxNf5q4rmj/Y7icevjj76iv9a2PoS2wiPfG+gbgnr6jeq796emMzy03B+esZfc27NuGR6gphSS4jcDqARIhB/D3XNkRB6CVxby3+WzAqnoUFRQUFBQUFBQU7MHSQOkbXiO4cKECxfMcuWUmUa4D2TAbLi/6efDd+d5KzORtu/Ql6ts1EpNdJvryS2VvAZ4Y0CYLl4c0tMAabRllvCjCikvRJYdEbvnJ0nRoeZqILqlbTjpO2IcjivkIP+dC/JmOuMVRX3N143en65JxyWtqENfJ3HKclyZ7ZGOWaNc2OOsr0eUZTAx5ehLWb5O4yIBJGMdtnBhgie0HbYEZPDv72PIUaHu2bxAnfr2Gp+/8cDcuaUsEkVFqw0o44ehEEB7/F3odZ+q2qsSZ3ehffqe+jvin6RVYv/XbJJwxlpjRG4/SW3OQa4NeFoizWceK+d/t1AVns5zaXEx9bQY8srI8kOtoumz5Edqiijhjfl2rq6AtjkyakYhuPxTaFmbwNWl4M7x2ODsoXOu98LlRVIXvKyXEdrZgVT2KCucznI164WK0X0aoisTsU+cSLhcS5olLF+kX8bI1eDv/s/GyRtsDC6CtoCcva5WW4gXB6ECs1xSCS3W6qjJhdT9ZMre6+wuLV90bUqgOBxJ5TnzRNe9YDm3T0zpQ35+vxEH17H28L+d2dzxqK8sXB00SYz347d7kiUXGXVI2Ut+f78PBfqQXL6f9dAi/r+6RfCkL2IJlW4a58nJa136Y5GQs5O0Dm0bhFo+VBbzEH7pkNrTt6j+N+u45ggMndyfeHDtk5ZPQVlbGg6qgG2dQ+xETLh/f34n3zqUUN35O+Fozbh9w0vPXNZTgdhoXN15OLdG5NlpK6lgbPCfc38HIwkHJa6HN5t2M+q7Jw4z6se5cdq16BQ5uf4m6hPr2j8G90cHH8MbIVfUonnOoQFFBQd4snIwiIixU+6mgoKCgoFC799CiehQVzlf0K9kuvG32mXW2cpyRsrrjNL6EpwGnBX1d+F5XX4rLmqWugdRX17IXtH23F48GlLgdk4/FthJeLo1wxuVW64GNQtIZkr98SQhzhrDtqpuNnZ6HdRTHtOElT5cuV0Pb94P498zyHNVmLnx8IKQ3tPk4qA86O8jOlhOBW6ewVtQ3SoezaIYjuIleYmQCzqC7bPuF+v4ejsuHO45jgoXEJMJOvuoXfhwW3jQK2vQOxs6ZLsYl4jkLeSazXSS+Hq5JcCBOP/wBaCsmovcS/V7nbHwx7U1o2lnKr4fONtwC4BNLFgchxF0/yxGd9jHrEk5mMrng73LdAV4CviwWZ8ln7+aZsCkdw6DN+s2z1Nc6DovmZxr4Gr0zE6/DA6I4AetEz8nQNsJBFrR69sPQln49/rwlJeeezGJpYKDYkOdciNDZbE00V3qBo7i4WPj4+Igj6SeEl7f9kgw7cIfyeInIywXvEdyNPFCIJYzK/fpw6ttsHS6nHemDRYIlnB7Di1Czl+VcFQxDEX7PNicucWHxCm40U5OVnk9054Lb207gBXBkApZOkZhLhIAHxPJNhKuD4x+0H7MT1wYNoL4tAnH/W5DVwYJPRJWr3Tkj1oVIc5T6cIH5KjJMtqCS90eR/ZgY+8wK6rvkSSyaHuTG9/hbMnAQ0jOcl9p35eAA1teV/91v/uQtL82InMxVAbzPUBhwIPldDmfb94/Bwd7nO7Bkk8R9XfD1Yji6g/qa43E5NbNK3+hJJbuyuMRV13Dcg+5ekNro9c5m4MdfR67Rp9dyoffH3fBG0dZtPL1XhoRHiqKiIuEN7pV/9z789ILtwtWDn2MSlWUl4vExnc/Je/k34WAQkILCfwO7DxwSsd2HaD8VFBQUFBRqYLH+lVXkD9EkoUrP5zkO51cJD5P97GD3fEwcWF/KddZu7oIzf642zuS1OOFsVgsrL6foYnFpMsIBmcHrGTwubU8Fzwq6uDenGaP95lxxPDNL7Df7C6Gr2/jeygWX6g5X8nIZ4zUHufPLr0Mo3sGWOBBrjvXFmTsfFweZDANf7bJaYjJLd8LUlfj1IC7V9YjgO/ADuTiL8kcy1smTeCEWl9PcHejzHSnBx6n5ipnUt+oSXMadeQduw5AI2zsf2sxdOdu2jyththfh2dUSHY/tbHTG+NEEziDP+f5taMu95UXq6/zN09A2fjIm4Ej8TLRfDQ4IeEer8fUfG8aZy4VmfO4ELXmD+m7qijVaE/y55ihbH1w8eenZ6ozXUmcHs+0tGThz/0Q33A6jQY/Z1hmkQFbCb1dnBZb/eOlZBYoKCgoKCgoKCgAms1XoSW927ec1RahA8TxHV2OW8Dbaz9JVtcJaaXdV8X4v87zXsXH0bdS33AlnulalcmLAKDKG7esdvIflxg64ubs8G09ekThMejYvSvtZVCSf1DuMPfi7aGneXcdu6D4a+ro7cR09p3Z9oe27/Xxk2cQ2+LWdM/kIt0c2Y9vHfflln+zK9R3DF70KbW49h1PfggqcyXZ5G08EkehxHyZCxJAMqkSxF5YE8dy7mPq2j8ZkB32/sdTXRpoUHXCGRHFHLMvj62AcmmkjzkauazeJ+g7ywRnWzcd4NnK3M+9/HX/j89Dm72BSTVUlvsZzKxwNl8OY0Zxn5y2k0qEr5oFBYPERaDNdzKWE8pNw/3N4GV8rDzjhvtsgg4Oqz1Z87uxqySVuItu3hbYlybyfe3g8vq+UEp3cMjL96KzK41iVPI7CeQpL8k5hAePpDHvXQb8HKjBDVOKVofhm8cFeHmQOboZPm1HNePlQ/ycmQgyMw4GvxC+H8fsa25yTO44TUV2XVl2Fs/XkIuUc11q4tKpbtrdW4YVVNxOXwyQO3IWDm/EtealdLMPjvzL7Xk9dPx6Ahb6tzjyoinXmtRz9SEwqOmjjZdybQvGC/7HuUep7/XI8CzZyGB+l6G7C7GRdFGdq6yvwDe7tTL5RuIyMO9TreKTon7MH2j7KxeLTEleNvAPaQov4pkpH2jiuI0xcCd8lb1G7ayi5xs082HMfjgPnLAfBQn4F0RAgoxIl2Eu7HdtPfZMjsWZpzB9fUN+hx/BmwHQNv1b2EAHy5pxvKPK6XA5tv2/nxJ8bumC9yn7RXJni691ZjdKFLS7lxJ6zAct/vPSsyCxnAS+++KLQ6XRi+vTpp35XWVkp7rjjDhEQECA8PT3FhAkTRFYWl39R+PeQGBMpln/5jvZTQUFBQUGhBpYGEVkaFkxeiFDyOH8TW7ZsEVdccYVGhR80aJCYOfNkc/ttt90mFixYID799FONXn/nnXcKvV4v1q3DWUB7tPzcA9uEtxeWOkA4rOcZhxZFOFuRG9qR+gbm4bLnCjMblifEQE9cupq0lJetPxC4JFJJSAMS/hm4Qf+gDy6XOJpi42in5bL+a2hzbsb/7iJzXKO1//JKcVYwo5BLJ707gevKsRXDw8LLWrP+xO/7RkKwkiglqZ3dnfk4vF57NkCbuwPylo3IsugsPDs34kPc/F+UxzMhm+7Gmc5iV57JzCSlOkekscWk5Dl6B5a3ktBPfMQhOQ+hTeoS6mspwBNSKgdNpb4Hc/E5n0GuFc03BxN07unKiSFlAhNh9ubw498tBPtuyeLvOa0If95oHz5NKobYd2VxslIikT8K9uAFzB1E0ql3hDuXxwkLP6fyOLd/vUG4uDu+D1eVl4p3r+7V5ORxVOn5b6C0tFRcc8014sMPPxTPPvuXIKg8ST7++GPx9ddfi8GDT5Za5syZI1q1aiU2btwoevbkZeHaSHcKEV5O9k+4Ca+vgX4f385vJOYQzNbzr+BaaNfiPyueHMkXIZsBX/Bf9eE6aml+90Gbs6OJ7U74Zi83gVkZJ8Q3cz4UV025SVt0aiOjFJetAr58nP5Zl1txabpCz0teLcjNfnAk/5535uKSp78DtrXZwa7Yncxw1B/AAZnExLa49HjgIixOLdFy3kJoG7bpZ+p746+4RPhxR95qscGtHbT1MmB9Toml10TR0ZEM5R54s+dTxOeiL87C11mCD+8j7BeDR7i5+19Bfc02Xj5+djEuIX4ykfd7uujxefnNnziIlDiYSdpWHIjm39se606mV/JrKdqKewn93HibhoEMNujhy1Ueeptw2XqvK9+gWolCLwsEJXLL8VpZ7WCN7uuPfQ8W4vOqtKTx/akXUun5ueee05JPO3fuFM7OzqKwkPcLS8g84BNPPKHFKPL5ffr0Ee+9955ITEw8o7+tSs9/A7K0PGbMGDF0aF1a/7Zt24TJZKrz+5YtW4ro6GixYYP9G2lVVZW2e6n9UPjnkJeTLT5++w3tp4KCgoKCQv0RfhYHj3M5wq+6ulpcfvnlWrWyoXj55ZfFrFmzxOzZs8WmTZuEh4eHGDFihNYadyZQGcVG4ttvvxXbt2/XSs/1kZmZqUX8vr51m3dDQkI0mz288MIL4qmnnjrt9yHuRuENUvbz7u8P31/wnnn0/a8Lw5pVzyzgDcvfTukCbZO+xCVeid+uwZnMF45yQsr0HXj6SkpfPtUliJStfk3xESdSTmYz/0jJF4eNdXtJu0fhJuwjo/HYKYngfJzZa82rViKElGoM/9/eeYBJVZ19/Gyl994RlCqCXUBUlIA19h5UYoui+aImdsVoLLFEPxU1mliSqFhiCygWwN47iqI0QaRIXxbYer/nd/0OmR3nfafszO7s7vt7nnFl79zZO+eee87/vO1s0C1Z//lKXp2fN1LfiaRlnO0BN+bILpUHymTrGxyhLE033PN4yrvNjB+kW2cmHy4nYdz7mR47PLqdbPn9uFS2GEKlskvfroGeBVqYo2RRLP1aPffoPruIx3JX6ztztP10lnhszs7j1XMH/zhPPf7wsQPkgzl69vFFL8pb+P2iv7ybCJzZerF4bFWnvuq5eWvlIvzdOunW2W/Xy/2ycZy097GPfC8ee/jkndRzOzaRn9FeLfXQgwXr5HCKPq11L0hrpY5qm6/00ILzl8qVCQ4cLH/upjihA2nLeg5qN+vZ6wPC2RIBayKhcJdffrk79NCfdrb5xz/+EeqQZ555xh133HEJ/20TiimwZMkS9z//8z/u5Zdfdo0b6y7ARLnkkkvc+ef/tzwIFsUePXq4/I+ec/lC1vPmQXIWYMWPupDYp6tcoHhIoLvxZq+UY6emHaqLvXKlmOuFA/R9UytbniEeG7hSnzhLB8kuz7PKA/dZ4Y8OGXrU4I5u6LCqCS2tvv9QPLdinW6BLOst7zGcX6Gv6tZVyoPywko9tGDSbrJbM2+VXlpnfnO9WHvvOXKsaKNCecsyaNlIHvD36KZvkbVva/k7bfn3X/TIgyPl0jtDOumxR9uVy8/SrQv1Sfe8trILMGijx2QWrJQFyr8L5cUaHPjCfeKxRoN3U8+d0fco8Vi/ONs7ljfRv5NSuMANWCoLVLhxH7lv5a+VhSBUrlUWP/fpcZUVp8h7bn+pxD5C29vOFY/NO1Pvs4+esnNKZXdg+kZ5fBgx7ecGiUiGHCxXxJizQU/266eE5eW31zPmbymVx6Vg8c8NMp4Nxfqe6bXhet4Q5RFs1KhR+KpJFi5cGBqmIj2bxFvuvvvuoWczGaForucUwLW8cuVKt9NOO7n8/Pzw9dprr4UmXv4fxY6ZODqGgKznzp1jx8PQiQh+jXwZhmEYhlG3sp579OgRijL/wmNY03jvJXokUc+mhFkUU2C//fZzs2dXLco8YcKEMA7xoosuCjtJQUGBmzFjRlgWB+bOnesWL17shg/Xt+2K5q0u+7pmzWNbWkYo2bjxiuo6xas16sz/JubEYq9v5cztpzbpGbNHFsuu6bVd9GzrTX+WV+dfjdcfxM/fl61C53df7XoFP7pfH31I+LPVyqr3trT3ruK5lXqSt9N2B8v57GX13JKBcqHvJnEsOx2P/6t47L1/6oV+P1umu5577ignnYzbol9Xo3VyEkZ5G92Ne/8ieV17bJke0F74/rPisQG7/PSMSpS+PE08dvpa3X38523kmpMXF+oF18u7DhKPDSzU1/grxskW1B6Bbrkfu0BOSCruOU49N3ej3ncGVsoJa9/1Hq2eu6FYdk03ufZa/dxJ94vH8o7Vt5Zrv1F21Q+epz/DuYfLXp8fG+vTb6Himi5v11s99/2v5PHuF8fLSYEhS+RM/QGd5MQeeG+lbJ3v2kqfG7ZcLc87XSbLYSmbQuvdb102WRSXLFlSxdgjWRMvvvhi9+c//1n9zK+++irUFrWJCcUUaNGihdt++6qZYwSJUjPR//7UU08NXclt27YNO8y5554bisRkMp6hd+vGrkULoeC2kmG4T/FH6ucu7KaUE6nUJ92gkxxL8stWuut5+RY5o7KzUsImpIMcD7RvK32CKsiV/+6UDY2da9HN7XvJLo4p8p1o99gGeWI9Wtc2boOyU0Xrnnqh527r5Uzd4k565uKqW/cRj1U00mN6/rZYFz+HfP+ceKxst1+p5459XF7JXnqgXpD3tPZyLOETu5yd8t7X29yrux7zT5aFdeFmvUzRhcoIW95MH/xzZs8QjzXZVt8Bp2eF3Fa5ca75jQ5ykegb/6k/o+ftt616fFQPObyg53o9XCZY9LF4bMVN/1LP3XyavBjYdItcwgq+aiyPd0t76K72D7+X2/qi9Z+o587Jl+NMG8dZKJ60o3xdqwN9kfF9qx3FY9s9fZN6br/j5ELg17yix6/u8ls5Br1gnrzA2BRncZIOKoJKV1FZmdD7IFGv4AUXXOBOOUXfPKFPH7n/aXjvJZ7MLl3+6/bn38OG6UaZaEwoZohbb701rJuIRZGMZjKN7rpLfhCM2qV0y2a3culi17FbT1fYWN+5xDAMw2h4Wc/xSDbruUOHDuErE2yzzTahWMSz6YUhsZNkPyeTOQ0mFNPEq6++WuXfJLlMnjw5fFWH8klnuLLC2C7mVy6Qi9/+oreeFbdN6SrxWLBZ7xZBgZyQklOqF5FdX6Jk8nbSVzmLDpUtcDvl6uWEikplK+nRPXPdJ58tcL8+en/37ozpbsd+VTN3c5V6Zp9t1jOIh3wtuy1XDpZdy9D6dXkLv7zOukWxvI9suS5YoSf+9OukW4XzKuW6c51fkbcshJeUAOp3N8UJmS6RLaGjt9Gtke0WyeESwfH6oPmwsq3y8dvpFqUNOXKyW5v1evbxyoH7i8ee/lyPMTqvvezir+iiW7JbbZKf0ecO0bN8502SE84g52Y5JKKkpbz9G8zpKffLAUqSFHS8X7Y4Bvn5KSfgfLlSL0B94WC5T69opCd+BWfISUW9JuqW+wUDZJf316v05I/h3WX3ccFBekhTUCxbhffppwuiAe1lt/YL38hj8Jbi5Eq9pEJFZeBya7mOIqFra9asCX9WVFSE9RRh2223DXd/A1zUxEMefvjhW3eLo8YzdRMRjldccYXr2rWrO+yww5L62yYUDcMwDMMwBMornctJQATyvkxx5ZVXuoceemjrv3fc8acQgVmzZrl99tlnay4EG354LrzwQldcXOzOOOOMMLl2zz33dNOnT0+6Wott4Zel+K2DFn6/TIx1aF4ix238kCPH5MEXK+RSI80b6euHXq3kNP9ulXqg/E2z5Rpdgzrp5VEOXFPVahtJ5a76CknbFeDxOT+6777+wl178sHusoemul4Dqlrrdu8uW6tWFetbuA3rLK+So5Nmorl7hVwb7vRSfSvIvD5D5YNrl6W8VRpM77CfeGyJsnUYnN1Rjp17slgP+Dy8s2xR/GizblHcNZBr8JV8/qZ67upRp4rHOn7+jHpuxXr5eWi0vR6v/EGevHvCzk30XRlyN8lxphs66BbFJRvkGpx949TRizeZlFXD4lJSLp+rJX5A8zLZLPjdFXoiRK+rbhaPrS3U63e2ypM9GZUvyiWM4NXBcs3KQR30HVK+XS1bDfv/42L13KcPkOMMTxyibw3b8gt596R/FehlmfboIc9ZFYoA21i0wY0Y0DOjW/gdePsrrqCJnsgDZZuL3fO/HWNb+Bk1S6vln7uWG2N30BfHyQH8Sx+XEw7g5L5yxnTeSr3O3jflsov4+Gl68eLHdpNdNRXdd1DPdT3kAP5Vm/VivR0ayxNJZRCExUmBn/w70czlUS30xIDvS+SVW9OFejuftoec7PDhj/p2d05pjq7d9IzJrxrp4QOLVsuLjJ266IPjiW/IIQ8PHaK7DxdXyK6rolLdnVbRXnZr5uTr4qdjnixQlyi1TKFpgex6bNtIFzc7fig/w2uG6n93c77cVt3m6vUKu2wnJ0IVKlnrsPI+WVTBG4dOEo+VxUkW2Ke37PZu1UgPW3hkrrygO/4G2R0Oayrk/tHsmRvVc/PGyWLvkZ76doiHKXVF31isjzv795THnW/OvlU9d69z5Otq8dAU9dzNO8jhNBVKwXzoqGwt2mapnJy5YaO+FWZ9cT3XJiYUDQNyclw++0Hn6JO3YRiG0bCoMKFoZDM/tNveFbWIbaXZ+6YTxPNKPtIzrH/1pVwu4o4j9F0fbpgqJ0M8cJxuFdygPEjPfC1bm2B8D8XNWygnWEC5Ult+Qp9c5/oMcZOWfhvz+JamskUh2KK7gFoVylay3GG/UM9dslm+5p07639XSyo6/BHd5X1fnHv47neyW3NZkV56Z+ES2WWaW6Rb9va7Wi4XdNwR+jXv3m0b8VizQbpL7J/fyhaLE7vo1tc1jRR3eo5uBXu1k7yb0B5xXK2fLpevq7liMYRWpfL9DQr02KaKc/TdRo4qlkMA7l2qh56sLJZd4h1zdYuyFj4yZ71uyRzUXG7LV/fQyzLt3Uq2sHdepyfgvTRfvg9tmuhTd94aeaeafq313VW+/+uT4rFFm3Qh1LdMzvzq0lxPhGq1SQ6J+aiZnLy3sVJvx2zOeq4rmFDMcjoWlLmWhbEHyPzt5eLdm7vpYu+vij+12RcvqudOPlzOxsyv1GP2mv3whXisaUHvlLOtn/pKj6v71Sd3i8feH3ehem4vJ8cZdS/Qt3DT4hDXdtAzlzcosWJdm+uP7itL5XNvO1L/u5vL9Inzio7yZJ8TpxDwQdvJ2yHOKpFjAWHuX+QJLnfB++q5y0vk7PT/7KpnkP74b3nf9Om7ypmpMPDTt8Vj7dfo2eejvpBdxAWt9Jjc4d1lV/vqzXqd1JI8WVQ1fVwvbJ1z9GX68WJZ/BzSXxbz0LlMfsa/2qTHCvZpLT+na2+QC/nDnDNkd3qvG/UaeDl/kSsX/KLoPfXcioF7i8dW3yJvKwhlF8rVB9Zs0cN08v9yjnis19n63/37D3IcX/NCvd+VfzBdPPZmaznUZktxDdRRrAwSSmaprxZF28LPMAhon/eNO/Ow/cKfhmEYhuEJiGOvTOBVT3ODzaKY5eQvn+vyhWSWxR3kCvpH3vSG+rlP/U7emaVZuWyNgsItciB1UKBvfD4zR87kHNpZd2vllMuu6TN30jeczx1wnnhsVHmRa56/2s2bM9sNzl/tdmwZtUKtkL9vzg8L1L+7eTt5l4t5K3V32c4FsgWlskS3oIxrLbtjKhvpVtA5RXpSScUA2XWZ+4lcNxKWjZ4oHhu94gP13A2PvCQea76jnkFcotSteOHWf6rn3rWLbJ3Lm6dfc6liYShrru/MUjZOzk4uUrL4ocUr94rH2u53unpuo3cfE4+9Mup/1HP3X6a3R+WWTSlvS5mzVLZkD24aZzvEJrKlu9tJp6nnNmslh0QUjpbHYCj4MXY4C2warIeeTHxaTnbrM0LfhvP3z90mHus0/GD13E2Xy96Xytmy1Q8OHSAnHH62Qq85uXmfX4vHDtokWyM3FjVyuh27+lRWBgm5lc31bNQK6zoNcRVCmn3HfNkg/HInefsvaNZEFjBL+usZtb03yFsxLW6ub+HV4uzDxWOtnpiqnpu7Rp4M5l38O/XcbY6Xs0Tzu/V1bt3/x8esW+ZyVlWNlVrXQ45hmxdny8KBysAxrH0cQZYnbyS9cL0u5sffI0+qr12sl6Fp10R3TZUoIqXxINldBvkVSva5UkoGKk68UjyW96Mc0gA9vpDL2NyyQt/usjD3BvHYFa/MV899ZrosFD4boxfcntr7aPHY0d318ICyX8iFr9ddoxcYn37YVeKxkxY+rZ5bukXPQP1+lHxdLe/Wy7ZUjpL7VuU28nZ3kL9abuuKFnIZKpi3Vi751OVAXbC99aPcHt9+qhdN/9toOWbza6eXqclrKcdO3vqRLqonfiRv5BC002PBZ6+Uv+/OXeRC3vCjIgYrFEuddiytFsUg/t8xi6JhGIZhGEYDI/h/13Ii76uPmFDMclqtX+RaVsZeif3QTA7+Xv7LS9TP/ewL2Y172ID26rmvrJG3Ldu5rR72WqhYDeMVzS1vL1srt5n8qHruVbPkbLxrSr9zruz/k3DKSl1QWtWC0CKQLQq7Ojm7ECo2yZl+Zc11q0B+ieyq2a40zhZuhw9OyR0KbyzWizkf20EJHg90S1fOXTfJp16q13dbr9TKXN9CLyI9X6kdufdw2XIHL8yX22PZOr3A+OxDZSvpc530Onqje8oFiO/8Qq9Xem7TmeKxznHaeeRG+Rleus2J6rk94lijC0vlZ3zZideo5zZvK4e1FG7SrdFbOvQTj435i15wfXpnudB/WZGe9b7PKbKVdN/W+nMY5Mgu717T9HqVb+8pFxHv2lIP8Xm+7bHisR066VbBvZWtVOdujBOWtFC+h+e0X1ardRQrzfVsZDPPrG3jmpbFdkE0KZIn7HHL9FiSPrvJk1TzXD07bd8NcrZeRffR6rmvfidf82Gt9MG+rIMsFDcruzbAuSOUPZlLCl3vJh3dI/fe7nrvNMK51lUn6DOmym6re7vJJVugbDe5DNGTcQrQHj1ILpqsO62da99UjkNsuUIvjzOmj54V/c1m2SW2ndO/U7NL5L3PV8e5hyuK5dI7jZUwDNBC+oKZD6rn7rP3yeKxVnF2McptLbs1B5Tpk24rZf/i0dvoMarLm8pu2qc+1ysEqPG+lfrYsK5cL3HUbZEsusp7yOEw0GSlnCUe5Ol/9+B/yCECb56s79dd+Z28y9Ga7Q9Sz81d+Lp47N85ekmnw/vKVR5yj71UPXfRl/JzOLyHvotR71by2FEwT87ih+Jt5Eoc230o77cNLXY9XjxW/pks5suL9VjvdBBUxl0Db31ffcSEomFQl6x1K3fUIXF2OzEMwzAaHIHFKBrZzC+7lLmWLWInLmxpJrsur1iwq/q555bJHbplpb491MaBY8RjLebpbpyBt9wuHlvxv/r2UO1ek7NTZ3bTM/kOayN/p/J2vd2KFSvclMcec8cde6zr1Klqu97dWE6EeL697orbf4ZcR238IP0eVSpuzdKPXlHPHbS3nNm6NJDd0tC5XL//f/tSdolP2Em3znTYLLtMc1bKCTjQvlh2a+U207cO/KqdnOwQxEnAaP6V3NajeurW1/LmsnVuQJwM8VntZAvbt6t1l+dpw2RL5i/7y5ZqOPA+udblCycPUs+95pXv1eMn7SpbnKa8I4eHwHVN5KSj0pH6c/g/Y+Wksx+a6oW+l3STEziGFuqW7NJvPhWPHTFG2Y+d56FItgo+vrRxypsTBIV631lxvbzXc+ff6DVnlxTJSXYXLtSflft2l8MSCnrKoQMFReZ6zjRWR9EwmCx++MFdfPHF4U/DMAzD8ASJ1FBMMOGlLmIWxSxnzUO3u7LGseNv2p1+kXjeNQV6LEn+97Igunp5T93i0F+2dO3cqY96btHV/xCPbVemb+FXtlaOrRrzvRz7BhVHysHdOVs2uJzSn1al/OTfkeSPlnfuOChOzNa89uPFY9so9dlg1neyBW1MJ73EzSql1MSgVvpgVpGvb7V1UUc5LrOyQt9a8PlVTcRjB7bTv1Neczm+tXKNntwz/VvZOnPuAXq5mAptq704QUlvLpGv+amleimpm4fJVtL9murPivtRLmHVrr1snYGX9pZjviq/lHeLgQv3kXdtgqe/lp/hK/brq57772/lfnlEHJPHQR3l+NY75+gWtt/2lC3oFRX6WLluidwv222Sd6mBnDL5uk4selc996vKQ8Vj/b94Xj13+sFXiMf2b6zHxs5fJvf300fpO+80+sck8diDI+T6nZs3Zn5nFpeoCDShaNQGa351pSsV9nr+6Ed5QO84SN9abLu2sutiX2VvUxjWSZ7s3QZ9xO7aQhZHiyr0moS/+VEO0J9+nC4yzp8pD9iX77et25Dzk8Dh59qcqkkGv58qC6NrDuiv/t1t570gHnuto77nbgttn+hW+oA9uJEsMpeX6u38xVJ979QbXpSv66kzdJE5rpcsYL+7VC6KDhWXyUWk++brrrgeeXKffeRLPYnqpM7yRPT6Fr0G374VcgLGiIP00IONylaKG1vqWyU2ny6HeDTVa5O7ip6yS3TvyZ+r577eT8+YH7+D7MZtvl6vIHBIP7muaN5H8jaLsHGoHJrSurEuukuUjOmiUn2hsPmUP8l/d45eN9YNlYtXf9tEF/v9FG96sKu+/WNvZXEz/kG95uiMw+SFYomSkAIrTpTrd568UV74bGi80cmbDqaHyiBwOQnEH/K++ogJRcMwDMMwjDhb+MXDklmMWqEgNyd8xWLXbvKy8atVesmAFqvlHSOe+0K3Cm7fQXYvN2+h1wZsq4TFPv+tnkTxn07yirTyY93CdvOB49VdG3rlbXQHjxkd/my/sapl48aD5a3W2r73iPp3P+gvl8fRnbTO9Wgp1x1b1VbeLQaaK0H2Xb/Vt3fc+079Ppz9K3nbsiYvyJYsWDdODgFoe+396rnNKuSg9WUFsrUJ9mgqD+DdN+mWrK/yuovHRsyXt7uDF3rKOwIVLNEttz1ayVbSFnfpO4LkXXKHeOxjxRMBwwI5EeK6Y4ep5wYF+tjR5PWHxGPrvtH3Wa+skK13JXn6322VL5d8+WCJ7hItq5T/7qFxEoPWbZHrSnaPk4C1vEJ+/vsv15/hqavl+7R3L30LT20HlWm/0ccdp5QwKthNryrRtrFS9Evf/S/jBFZw28hmWvzjj66FEKP444TrxPNG5egZpMFG+cmbtN/u6rlrlMFvU5leNHujL2wdgz26ywWGYX3Pc+WDk/+gntt5W7lm2bJ227vmg3u4ex5/Lvx3dF5u/t/lnUQLjpDjF6FVY/kRK7z6VP3cm+R4zqnfrlHPPaaLHEe6sucI9dy//I8e83NAX7kO24L18tZhsETZ73V0B32QjY4djaT4Cn3/4q63ywXZg0X6Vno/tpTdy33ibDv4ix7yZJ+36GP13Ed/kN2LYy/4X/XcdSWyuNnm33ph69wxspt2h1663/o/3+mLjEP2VOq3usfVc4tHnSQea71Wdk3C66VyNv7Vg/Ql2/w1cnxjozj7U+9QMlc89uMreq3bLsfJC5TP2uv34YD28iLjia90V/uxvWUhmffjEvXcrRsXxGBTez1M54V5cszm/NXNxGNbijMvziornctJKOvZ1UtMKBoG41tZmduwfp1r2aq1KyjQV9yGYRhGw6GyInA5WtX+iPfVR0wopsD111/vnnrqKff111+7Jk2auBEjRrg///nPrn///66YtmzZ4i644AI3ZcoUV1JS4saNG+fuuuuun9Xoi8ey4y53RUIyy7BNspm/rLNe76yoQnbVvLdYd4k1V3ajGNFK39JsnpPd5V036XXUZm2W3Tz9z5K3hoMvS2QraNPywH0x+wt32Ji93DOvvO6236Gq26b7aXJdsYoy3Y03cIN8jzbtodczLHByTbJxffWkkY1CuAK8t0i3+ozto+/c8NFyOdlp9wJ9149t28tW4y836Zad7X/8RDzW7CZ914eNt54vHvvb3r9Xzz1rkOyKK35et85MmS0nd5y6Wt/VZ/jucrJL+9Vz1HPXtpef/yad9TCN2W12Fo/Nj2Mx3K2r7k51gfy8/Ke77KaHo1bKOwq9k7edeu4OnRqnHKazR2PZeh+U6t+3oo0cEtHhmFPUc8sXyt93RWc5KQiaFshu3B276NcsVdmAvEAfo8uWyOEDa9rpO9Hs0UO+rrHKeLdhwwYnpwylh8rKIEGLoglF4/957bXX3MSJE92uu+7qysvL3aWXXurGjh3r5syZ45o1+8lEft5557lp06a5J554wrVq1cqdc8457ogjjnBvvfVWUn9rYLvGrqWwN2fFR/JDG3ytu7XaDthJPLbf/A/Uc3MayYNu7qCR6rntpsiC7vsJ+uO+VwtZhC6Ls5I7/f73xWNTztrD+W2m+Rkd7pS/eoF4bsUK3RXzq2/lieJfe+vZh//8Wp6Uj++r75v69AI5u3j0NroQfGWhnrm6f0/5/q9/SI8z3GexnLn+v6frIQ9fd5Jd5p8u0kuNHHuGXEpq9Ue6UMh95wnxWJGSqQn7KJnLP/bXhcKHS+T73+TZ+9RzOx4sl0e5r3eccIkf5fCARnG2Suy2Uh93KpT45vZN9T69sv0Q8dhGJaQBWnz4b/HY8L564eu1zeUyRuV36gWoO5wk5+Oub6/vT765teyq7a0sfGHhOkWQz5b3TYZbD1TKFOXqkiFn5wPFY903LVXPrfhSjkG/v4W8ycPm4syXxwkaeIyiFdxOgenTp7tTTjnFDR482A0dOtQ9+OCDbvHixe6jj34qHbB+/Xr397//3f3lL39x++67r9t5553dAw884N5++2337rux619hdWRlFPkyDMMwDKN2CbKg4Pa1114bei+bNm3qWrfWF/sedEpOTk6V1/7767VOY2EWxTSAMIS2bX+qT4dgJOZtzJj/roIGDBjgevbs6d555x23xx57xHRn//GPf/zZ73M/fcHlNovtkvthoJxFtmS9HIANPVrJq/dNu8pZvtBdqYWYU6oL3NW/ulo81rdQL169JUcOaO65Sq/v9uhv5ODvrhWr3Yr/37awQ+X68N+RzGsur/x7xXHxP6AYK4K1+nZnO3eV3bTf6h5+d+hSORu7/DO9OPXAA/SM2mWlslu7+2G/Vs99vqlc77Jjgexqh3f3kwe4faa/rJ47r1S2wBw3VHfj55XJN7G1lqnJd3pZTjopGKu31dGN5ovHXjvhWvVcOYXCuTML9H5X0VwO8Vieo7stFwdyRjzk5ch9Z0Q3PTFEK24+qIM8NsCK9keIx1Zv1sedxpvkvnNuy+PVc6c1by8eaz5bL3zduqOczPJJae+UXc//u69e+3NFiXwfmr/0pHpuwfgrxWONi/SwlHlDjhaP7aRYUGvAoOiyoY5iaWmpO/roo93w4cNDQ1SiIAwxVHkaNdIt97EwoVhNKisr3e9+9zs3cuRIt/32P+1luXz5cldYWPgz1U98Isdicckll7jzz/9vHBUWxR49erhg4F4uaBk7rq/bFnnf3E5duqnXvUVx1XZ8/W/qufd1lN1aZxd+oZ77bVM57mrbPF0oLFXiKm/+QN/l5O4uz8oHB+2pntuthZzcsiaOC6jDgtfEY8X9R6vn9iuXy8F8X6YXmJ6xzeHisb320bPLe2/R3biVH8kTXM52ulDoVC7H9OUW6fFvg16R91xukatP9kEgT5zr4tzD0g9lEdoo/1X13BM2yi6zx76U+was/UTec3nEaXo75y+Sz53bQg47gc2bZUFWkKe3Vf+vleeMe9xGFqEl/fUC9JWKA6w8zg5J+UrM7g7leoUIp4QPPFomu7Qhb4mcQb7nTP057NlN/r7/PEqf7Eufuk08VtFej2986xS5tFLvD/Si2TtWyCvYyqb6gqz/Qvl5WNZnX/FYkdPH/vriev7j/xuS8GAmA8Kwc5yY1niYUKwmxCp+8cUX7s039QcokZuZitI30sMOgwe6H+d97po1jVfd0DAMw2hIJFtwOzp0rDbn91dffdV17NjRtWnTJgyF+9Of/uTatdMT2qIxoVgNSFCZOnWqe/3111337v91E6DeMROvW7euilVxxYoVSSv7vKIVLs/FtiytbS0Hhi+MU1R3qLLfb/6wvdRzzxKSa6DyMz0RolMH5WHJ0a0VfRvLNbruPlAvuJxTIm9bl7Pky/BBCNf3MS7/x17yQ9W9VA8MX91XtpKUxdn+q1GhvFLuOf919dwP8uSCu2UPyO4hmHPwJerxgSNOEI9tjDOYNn9XrmfodtJjZ2YpSTYHL9Br8HXeW3YRLtisD4P5neT9fA+bLbsH4elfyQkJJbl6EsV1a3/yUMTiPMU9CF3z5b4zd5W+RWcrpapBN6UIPMzoOk493kMZO/oXy/txQ06F/PxvrNQLXw9Y8bZ4bHnvUeq5nTbKSYOtxuthGpXKPuEz+uqJX2vG/U48Nul1vUj81YfI+5cvrdTd9Ht8LSc7tVXqwsL8Ivke9d+kj5WfXXuneKz0NtnrU6z8zXQRVAYJZTR7MYk3MJJJkya5q67SE98yAW5nkmi32WYbN3/+/DDx9oADDghD4PLy9LCZSCyZJQVYNSASn376aTdz5szwJkRC8gq1+GbMmLH1d3Pnzg0TXogvMLKPbxcvdQedc0X40zAMwzCqWBSDxF6wZMmSMHfBvwgti8XFF1/8s2ST6Bdl+FLluOOOc7/85S/dkCFD3GGHHRYatj744IPQypgMZlFM0d38yCOPuGeffda1aNFia9whZXCoq8jPU089NYw5JMGlZcuW7txzzw1FYqxEFo2c8i0upzz2bVpRLMflDG2hx/vlbpHj38rb6oHSQaHsnl2/s7xlXchaOclmSaDH7HQokLvrs3P1enZ92sj1Gxfk7OAWbcpxL7/7ifv3pu6ud07VMhzHFMgr1qU5XdS/u3KD/H13LNR3V3Hfydssrt9Oj+dqpNTC/J9Wx6rn3t5Oj398Q/nsvXrp99CNlP92+fS/qqdW9pWtgoW76tbI1Xny/d+xk26du/Jr2bLXq71uzXj8W7lsy5499eH3z7vIsbHvrtOzme5ZIFvQL1gkx6/B0kMvFY91f/1u9dz2K/TnsPn4i8VjuRv0rISXiuXEkLaNdW+E6ypbdpWdAUMqm8h9esPDt6rnrjxWtt63PeA89dz2b/w3ASGai0briVAbFeNXpbKzFvQskRfLb62T7wHs0VW2Vv5QqJcD2uFOOfErWPGOeGzDRt1CXhsxii1btgxf8aDWMpnJGn36yJ7DZOGz2rdv7+bNm+f222+/hM8zoZgCd9/902C5zz5VJ2syi/xNv/XWW11ubq478sgjqxTcTpZg4zoXCIWXX1oqD8oDttEnsPEz5Ans1uX64NesszwJtR8lB2+HxxVXTIXT3UdvL5cF6jHrZqnnLugq1yxcoOduuFWVsrvts+X65DZuG3mwKHV6wlHjLUUpb1k2to+8/ds+vXUx9+0aXYSM7Cl/p8ab9S3tKt55Rjw2f7i+DV/nzfLi51/LdXfa8fOeFo8V7SQn/sDYfnK/bN9MD6SX9mmHijgTz+Mr5ULfx7XR63fuso9cuaDRUv37FraWv1PJ/ucmFKMlv0HuW7kl+rM0pKMcXtIkzlZ6uctkt2fXLfqzVLKd7JpufoZe+7W54i5frmyzCC32k7f43BQnAatjqZxh/EOlHp/2fSN5XNpjthI6wndqLS/mOjTR5caqXDnEo+V708RjZZvilIBIA5U8qxkouN2hQ4fwVVN8//33bvXq1a5LF93AEY0JxRSIOxgyYTZu7CZPnhy+DMMwDMOomwSVFeErkfdlCkLX1qxZE/6sqKhwn376afj7bbfd1jVv3nxrGT5K7R1++OFu48aNYaY0xipyI4hRvPDCC8P3Y7hKBhOKWc6annu4MsGE3exrOfi7vK28OoO7jpRX4BtLr1fPbbJJtmbEk9BBgWyd++Emeas82GOSLLrzCuVtx2DbZfKOOC23GeVmb/ipjXft1tIN2aZqGYdPlsnW133iuFpzN8nu5anL9BDhVsrKfpGy8wJMe+kz8dgjHd9Tz+2/n27Za/LpVPFYMER3ZzzaWd6m7aRyPUA/2CDX/2vbVd61BeZUypbusnV6zdFRTWUrabmyRRv86hG5vudjY3QXf2/ZcO/+vU6vhdeqRA4PGFOpexsarZOf77yPXlLPzRkjW8FgS0UT8dgXjWT3MFRslK9753K55iRs6CaXE/p+gx6ms52TLX/z1ullefp++E/x2Bd9j1LPHajUhmzVSB87KprJVsMBa/TnrLyV7Oos2VPf1eehd+S+c94IfU56eYE8Vh7wCzk5Z3OYYXyFq+9C8corr3QPPfTQ1n/vuONPfXrWrFlbvZvkQvi6ziSrfP755+E5JNZ27do13EHummuuSToDOydIxDxm1Dik1xPruOqbj13LFrHjq3LKlAlug17c9Ou2ci21bb98Sj33023lOoqdlZqD0EMpjF25SS/W/ZWyhduABS+q5+b2kvdV3utfy13ZxnVu9ezXXLshe7uC5lXrX/7ztN3Ec9s20TPHmn4ot2VeO938H3SsmiRVhe/1fYL/WSlvdzY+V95DFkZO0+/hzN+PSklkwIvrZLf1tC/1QuA3HyQLiYIteg3GReVy2MKaTfpkP3S2XLw8fzd5yzL4LkeO6erxtexOg9y+srj5Nk/vO30bye64h+fpwvjYBQ+Lxyq36G6+LYfrW9ptLpOnm4o4U1HzQlkcVd4rx1XCyhPkQv83z9Jdz3sroQfje+iiu6KVvNiLN/HmbVSywJUQnvBwuXyfFud1Us/96sfilGOQC5TLenOJHlqwZw85jvid7+XFevHGIvfLnfqGAimRuMBU5uFux//V5RbKixxPZelmt/TRMzNyLbWJWRQNgwGueWvXebgsgA3DMIyGSVBREb4SeV99xIRilvPSmmauaWlsF8TYPvJq9c3NeoBs5QZ5xbmyl56QMqKjbLaeMkdPZmicL2dUH9lRX3G216x3g/Tajyty5MSAv8yY6NaXlbl3Vq1xw9u3da0KqlrUup/1hHhu3vxP1L9bViTX/pvb7xD13L7KVolXfC+v+qFPB3nAmtJ4B/Xcx87W9xHV4rWLWuh1Bcfmy5bufnvr2X3lyh/Oz028Jlg0O7bRbTt5O8gW1Gs/192WJ+0oh3gUDZPd8PD+D7IVZXh33eq7ukxuj8MGyJYbeCZ/vHisS3PdZbVnqZ4Z1lqxdD24WP9OE7rK2a3TD9Rrf+6jJOj8bYBuyXbd5R1F3tqoPyvtFDf/wNXy7jmQ01Qesypa6hblTc27isd6r9A9Cq26y1n+G5WtMONV4hi1OI4FvZ0cN7dPjuwu3yDUGU4nQZCg6zkwoWjUAnNWbHSNhfni2n/LD/w/z9TL8GwzX441WjFALzWSUyoP2K0a64P9gPZy3E1Oue56bvWSvLXUx7ufqZ7b6Y7fiMdy73/KrZj9mfvjwfu6h6bOdG2GVC2EXDHrv3Eh0Wxaqbv4F0z9QDw27GZ9G7b5+bL7+JpfbKuem/PyveKxH4ZPUM/tmqeXmxj/uFyAePKRsosfgkaySMnVPaKu+Y9fpbQ/MfRZIYc8lHwhl94AzTHdta8sqqD7EnnHpsedfH/huMYLxGPBOv37flEqHx9ZqbtaD/tGriBQMFrf23h9oX5dV86SSz79dpS+UFjbVHbjD22qi/1b3pKFxkUj9VJT3yhxiMM7xqmto8Q3Lmu8u3pmxxxFAOXqU/d3Stxl1w6yEIRGT98oHls+9r/bzMZiyOr3xWMzeuhhGj3LZNfu/V/Jorkk89VxXDbEKNYmJhQNwzAMwzAEAhOKRjZTmJ/jCvNjRwhP+91I8by2y35KnZcoG3aAeCzYrK/OF5XI7qedu+gBvx2byi6x+Rv0uoK9DvmteGzLMj0LuPsFcuHbnuu/cDlbfsqaHLhlvtupuOo1ljWRraB/G6BneR59lBxkvyiOMSJXCe5/Yb7u4lvZUY63POklvU7mzV10q9GjI2RrxQdrdLPgkPdkS6cbPVE9d3OnQeKxBev0pIIBnbcTj71ZqFtY1m6WLUoD4mxp90WhvBPT0Dy99t9nZ8k1+jrcryec7dZKvkdbZupZ7+vHyrUS73lfzjyHy5o8px4f0l1ujz6N9b6zaLPc1h2b6VPZRcPlrVNXxhnv1ij1O5fFyR79drU8Li2NU2D8mO/kbSkf73WMeu5xg2XL7tR5ccaOfrLH4aQZerH2r/aVtx38+4tz1XMfHisnf1zbQbZEbyje5GRfU3oITCga2czZzea5ls1jZ2xW5sglEBbfq++gkHPp3SkNbjC6kVy8tmj6FPXc2/rJOwqMf/0m9Vw3XM4+XtpBd5eXfvhv8djK/c5xy1v/NGkvb93fLe5QdZ/kLwO5ePW5vfV4r8Ub5YGjyZ26G6frKbI7vd02uou35RI5/qmij37uSQPk+CYoa1J1H9NIhlXqGcTP9D9JPHbUCtlND/fO7yse26mLnmGYu1YunzKk667quY2FhRqsUkRkvILb8WrzbvuIXCT8oxV69nGXvB/EYyVjzlDPbV8iZ5D/ehd9Mbfmr/qUPfwkZYEap2j2hwvl0JQjB+hFpNdskReoS5Tdk2CHjnLGfFmcmzi67Evx2B7PxdkU4Xh5vDuxTZz9jb+Wt2gb2093tWvZ50066uNsv2by8/DwMD1+/ZMKOZymbR95TCoq0kOW0kFQWZmgUIwXilA3MaFoGJSxadbM7bjLruFPwzAMw/BUIhITEIrh++ohVkcxS/H1m9Z8OtO1bBE7kLdipeIG6jdc//x82RJWUqF3ic1l8qqpc3M9maXw4/+Ix77sPVY9t1crOXOxmdOtAs9/l/o2T4e0kgvBTl6su9p7t5aPH1iqhwfkNpWtZGXddHdpUaW8Bly1SR/Mvlcy4qGTkvnar42+pV3hUrkQ+Os5eoLOnvnyHrTvVOiWrh07ywuALeW6FaD1EjlAf1aBbp0d+aVck7DkF3oCVqvlcgLOvJayGx62WfKGeGxm813Uc7u2kAuBDwhkbwJUfKUnBuVtL2eQz3N6EfFlRfIzvtemONUHFn8jHiscIofwwMxSuW/ttXxGyn+38V5HqOd+lS8XqJ5wz7vquW9evKd47MC/fayeO/mYqsl8kTSOY/X9cZPspu987+/Vc7ucI4fpTF0lP7+bNha5Xw3vn9E6im0PuNrlFugF8qGybItb88KVVkfRMAzDMAyjoRBYjKKRzXxe0Mc1L4i9Mnl2vWwVnJinx841U+KucnN0i2IT5dx4MTuNtpOtGfNX6nUOKhXj9w55P+pWwUDeMWRa7iA3f87n7oJj9ne3PD7d9R1Utc7gqa/LFra/jdYtqE//KFurctvIAfZQvkiObwq+0S0oTfeTk2z6NNEthr3ee1Q9PnO7Y8Vj/VrpO0Z8omzTtmiFHtzft48co7jrh3ps7NTiA1OuDdi4ZdWY1UhGV+rboVXsK8dkNtukl1YqnSdbFHuN1Le7+6SD7FEY1kr/vlrCyoV76lsW5uyh1/fb6OTnpWiN3i936yaXSPl2g14OrG8XOc747Y3y58K++QvFY+VDdS+I2+Uw8VDF+3LcdPjZ28qxwG9eoteNnfKlPB4+1XS6em7zUrk2ZMmsZ9Vzu+8lb0t45uBz1HP/WCiPh8M6y2N/UVENxAVWVLggNwERaAW3jdpgh4rFrmVF7IFs0F4DxPO+XasHO6/fIrsIdm8uF/qFnEB+MMvjFILV9iBt1Uh3H7+zRC5ePWCYPKjCj43k69opJ8cVrGy2tc7jkC5VRfaBpfKEXtJadwG2L5bbck1befKCzw6S91ze8xY9ISF3xt/FYwUDddfjkz2PVI8fX7hIPFaxTi9APOhzuUbf9iP1vW+vVvaR3U/ZVhIO7iYnJORu0rNAF1bILqR3inWX9/D1clJJZZzaj3k7yEkHRU4Xe4Pf+ot4bM04OTMVzvjgdvHYvMHXpVwUHUqUgtsz5q9Szx3WXAnFqNRDQFbfLyfK7Xrezeq5b/wgb6XZo1QPtejxlSzKXun8C/XcsUpNwnUtdXf50M5yWxUdoRcnb/q1fM2Nd5eLYkO5Mr7ffbC+daCrlMf//HVyTdENRfp8lQ4CCmlbwW3DMAzDMAwjZjZzpWU9G1nK9y36uBYtYq8OS5Tq+z1a6i5RjaCJvvH72r9eJR6bd6RcrxCe/1q2zp07XA7ehn2ayUklY+/VS6ucuY/sthzcsbkr+v+tqfi5bkvVAaFzudzOa6PeG80uXWW31o+b9NIqe34oJyTkFuulJnJXyHXHxjyvbzv3wLLL1ePlF8j1/b7corvx5nSVty3suUYPlP/j9vIgXNJO/7vubdk1vXgH3YK6vkS+T11b6Ja9dY3k3Ub+8Zm+ddyv58o7Aq04+CL13IU7ytboAdfo1uh3TpGtb3vHqVcYr87iRSPkMidllW3Vc78pkce0XnHGu+Kz/pzSTlPQOC835dI63fuPEI/1L5et3FDSTE782RinLNPzc+Vx9g/D9GclGLS3eGxNrn7Nrcrl8JHKRvrfzdsgJ0q9EchW3eJAD1lJB0GCWc8Wo2jUCi2fucW1bBJ7MmpykizKSuMsbBaulQfHgU5/8Ap/c714rIUiXmHSbrIIXViiP2RtC+VBavJxcqYelJTLLrH+jYrdpoKfXGK9C7aE/45kce/R4rk3z9C3Q7tijJzJ27W5/vhNePwL8dhV++sxautbyO3xwvZT1XNX/upO9finG+WwhmGN5fAAWFQgC6vmhXp75BTLn/3IMj3er2MXuf7bATn6Nff84SPxWF4rvX7fcxVyoe+JO+hu+rc6yy7iQY31va27vCm7j1tOlAvXQ9fO8oT+7gq9xuqo3rrYe2Gh7CbcrZseV72hRB7UmmzW3daNFDd/3jfy/YX3NsrP8JNvy9tZwiu/keNbS5TvAxuV6hKby3QX/yW95EV1USN9P/YtStWLKbNXqOdO+OYB8VhBe931XLnPieKxPVfJFSI2lBTXkEWxMrH31UNMKBoG4rj/du7L99903bvqMZaGYRhGwyJo4BZFq6OYpfj6TTO+WOiaC67nYc3kwPCPi/SaT9+uKU6p9h/0aSN/drtGuvvwr5/IK9KJrfXV+abecmbjZyv0VWWZskruFmcbtt5zp4nH8voM0//uJ3KdtVxlBR1SIbuXVgX6PWqkbA+nWSog52Z5CzdYf+7/ise23/SVeu4tS9uLx7Ztpxc7H9tHtsDlKa5lOPE7Oelo/yF69vmEJrLVuLJIT4QJBsvW6Ie/0fvsyPtki2Lenx5Uz/10hWy5G/Wi7IaFyUPOEo+dO1xPGmsZ6JnLwXvKbjPbHa6e21cZd1rrOSXutSVyezTK162zw9vKk//0H/Rn6eB8OQkj2KLf/3uKZWv06aVvqecGu8ghHn/9TA9bOWMnebFcGqfGbiMne5Re/E538R/YRvZkPb+2hVpH8YQ9MltHsdnwc1xOvj5PQFBe4orfubPe1VE0oZil+A764/wvXMsWwkPyrZwVt3awvFUWtCmXt+kKCnURUrBC3rPzs8ZyJjYMbCMPysGr/1LPLR4llxr53bO6QDlsmBwbdUSTxW7hkh/clbfd667+3Rlumx5V3/vtjTeK57a+6Z/q39W28230tPy5MG+/81KKQYILdlfcPHn6rBqv4Hrj958Uj92aoxd6v6C1LLqW95JjsqBDY7kxlxbrE/Y26+VSQ2Xt5Pgn+Me3svgZP0h3H1fkym1dsEmfsJfnyJ89b43uAu7VWhZVzQr0EkYzFsril6oAGuc9JhdUh9+OkzP9D2ult8fqVnK8ZzxafyIL1B+21zPmWxTK7VUUJ8bnxlny1pFnj9T7Xf/G8j1elaPH+61X3Nr91s9Wz13VWV78tnzzH+q5OQVyrGjFnvrC+Kmv5fCBX/SRQxqKNmxw/Xp1zahQbLL7WQkLxc3v3V3vhKI+YhhGA2HthiL3yHMvhj8NwzAMwxNUVLqAWopxXxajaKTA5MmT3U033eSWL1/uhg4d6u644w63227yZu/R5G1Y4fKC2G6Tz3uOEc8blKvXUczdKBdkfWmz7oobF8if3bq17sb5fLXsmthu75PVc1uvlQvf3vLLgeq5K4plN+6jK7q7hcU/WVGmF3d0c4uqBnvPPlTO8j03Tt241rPlLQsHvl21sHc0346SM5cHjtC38Pu+SG7nikBPOFqmJKvALnscLR47O45/ImeN/NmdKuQAfKgM2ojHelbqBdfnXivX/+t75gT13JMGysWNC5brluzytr3FYzkVejvnKIm8exfo2cX/+7VszegXx8V/wLay9ablWtlCBneduKN6vMPDcgLeylOvVc99+FM5K/aMnWWPAeT3lrdaXLhWd5e3aixPky0a6ePd7SPlBLyv1TPJ8pY9O/1z9Iz5Js3l9qiYJ2+FCW1Wy+0cxKl1+uBc2Z3+6w363+3fXu53c36U3dbFG3XrejoIrI6ikSkee+wxd/7557t77rnH7b777u62225z48aNc3PnznUdO+r7mnqund/CNWoa283Qu53sPh7YWneJ/dBcLhfzwTf6Az22n5y53LGp3qU6vye7lx/teJB67tDO8uC3Q7F+ze23yG3Vt//27tNNP32n0b1auWH9q2ay7tCpRUqxgLBh2C/FY9+00fdrvewreUK/prFcfBrylQLj5ReOV88deY3uEq/IUfZdjeO2Hvu0LAYf+pW+60eX1fJCYUt7fZ/olr3lxc/HneVyIFCwQb7HA7rq2fZa98hXFmuweJNceqWgjV6s/axOsrNoQxx3aYtiuUj4M+v1LO9DO+jfqeTsG8RjhXFc8cduL9/Df36uZ+OepcS/jeyst8dbq8pTin2GisbyNec5/dzCXLnzrGusJ921XSG7l+duqxfNXqqU/OlTpse+n9Za3tu6Mke/5qELnhePrR0mx68WNdJLBaWDAJGY03CTWUwoZpC//OUv7vTTT3cTJvxksUAwTps2zd1///3u4osvrvLekpKS8OUhxiH8/SY5CHtzI7lTbtigRxUUlcor4S3KbiLhZxfJK/CSRhvUc3M3yau/zRt1t+/GInlg3ZCnX3PuFvn4lqYbXHHxTythfhKXUvXvypafokr9EdKmgryNejC7du83FOl/t6hUvg8lpbpFMd5OBxV58mdvUsoQQbkSwE+skUYzpV9uKdTPLdoi38PiIv3cfEXtbSgoTV0oxmnn4gr5eSjKi2ONbJR6XF3+FvnvbtqoT4QbGusJCyVObuvCzfrzX5Qjf6fNxfq5GwrkflceJ9ykeKP8dwNlO1PIK5Of0yCOUCxQhGKuMn5DfpH8fTdW6v29WPEoFOXHGTuUMa0yT2/nyuLNKY0NG4t++txMplsEZVsSE4EVevvUVSyZJUOUlpa6pk2buieffNIddth/9/s8+eST3bp169yzz1bdM/Oqq65yf/zjH2vhSg3DMAyjbrNkyRLXvbteIzJZtmzZ4rbZZpswdCxROnfu7BYuXOgaN9atr3UJsyhmiFWrVrmKigrXqVPV7FP+/fXXP49OueSSS0I3taeystKtWbPGtWvXzuXk6O7NWGAV69GjR/jw1Kfsq0xh7ZUc1l7JY22WHNZeydMQ2wxbV1FRkevaVY9TTQXE3sKFC0PDT6IUFhbWK5EIJhSzhEaNGoWvSFrHiTNMBAaLhjJgpANrr+Sw9koea7PksPZKnobWZpSwyRSNGzeud8IvWaw8ToZo3769y8vLcytWVA2y5t+Ypg3DMAzDMLIdE4oZAvPzzjvv7GbMmFHFncy/hw/XixIbhmEYhmFkA+Z6ziDEHJK8sssuu4S1EymPQ1atz4LOJLixJ02a9DN3thEba6/ksPZKHmuz5LD2Sh5rMyMTWNZzhrnzzju3FtweNmyYu/3228OaioZhGIZhGNmOCUXDMAzDMAwjJhajaBiGYRiGYcTEhKJhGIZhGIYRExOKhmEYhmEYRkxMKBqGYRiGYRgxMaFYT2C7vxNPPDGsxs+OLqeeeqrbuHGj+v5zzz3X9e/f3zVp0sT17NnT/fa3v3Xr16939ZXJkye73r17h1X2yTx///331fc/8cQTbsCAAeH7hwwZ4p5//nnXkEimve677z43atQo16ZNm/A1ZsyYuO1bH0m2j3mmTJkSbtUZuS98QyDZ9lq3bp2bOHGi69KlS1gCpl+/fvZcxmkzyrL5cZ7t/c4777xwD2PDSBiyno26z/777x8MHTo0ePfdd4M33ngj2HbbbYPjjz9efP/s2bODI444InjuueeCefPmBTNmzAi222674MgjjwzqI1OmTAkKCwuD+++/P/jyyy+D008/PWjdunWwYsWKmO9/6623gry8vODGG28M5syZE1x++eVBQUFB2G4NgWTb64QTTggmT54cfPLJJ8FXX30VnHLKKUGrVq2C77//PmgoJNtmnoULFwbdunULRo0aFRx66KFBQyHZ9iopKQl22WWX4MADDwzefPPNsN1effXV4NNPPw0aCsm22cMPPxw0atQo/El7vfjii0GXLl2C8847r8av3ai7mFCsByBk0PwffPDB1t+98MILQU5OTrB06dKEP+fxxx8PB6GysrKgvrHbbrsFEydO3PrvioqKoGvXrsH1118f8/3HHHNMcNBBB1X53e677x6ceeaZQUMg2faKpry8PGjRokXw0EMPBQ2FVNqMdhoxYkTwt7/9LTj55JMblFBMtr3uvvvuoE+fPkFpaWnQUEm2zXjvvvvuW+V3559/fjBy5MiMX6tRfzDXcz3gnXfeCd3N7ADjwfWXm5vr3nvvvYQ/B7czruv8/Pq1YU9paan76KOPwjbx0Db8m7aLBb+PfD+MGzdOfH9Db69oNm3a5MrKylzbtm1dQyDVNrv66qtdx44dw1CRhkQq7fXcc8+F25/ieu7UqZPbfvvt3XXXXecqKipcQyCVNhsxYkR4jndPL1iwIHTVH3jggTV23Ubdp34pggYKu74w2USC2GOS5lgirFq1yl1zzTXujDPOcPUNvhuTCZNLJPz766+/jnkO7Rbr/Ym2Z0Nrr2guuugi17Vr15+J7fpKKm325ptvur///e/u008/dQ2NVNoLkTNz5swwFhuxM2/ePHf22WeHCxK2ravvpNJmJ5xwQnjennvuiffQlZeXu9/85jfu0ksvraGrNuoDZlHMYi6++OIwwF17JTpxa2zYsMEddNBBbtCgQe6qq65Ky7UbDZcbbrghTM54+umnw4B74+cUFRW58ePHh0lA7du3r+3LqRNUVlaGC+J7773X7bzzzu7YY491l112mbvnnntq+9KylldffTW0ut51113u448/dk899ZSbNm1aaBQwjEQxi2IWc8EFF7hTTjlFfU+fPn1c586d3cqVK6v8npUjmc0cizdh7b///q5FixbhxF5QUODqG0zEeXl5bsWKFVV+z7+l9uH3yby/obeX5+abbw6F4iuvvOJ22GEH11BIts3mz5/vFi1a5A455JAqQsh7A+bOnev69u3r6iup9DEynRmfOM8zcODA0MqPW7awsNDVZ1JpsyuuuCJckJx22mnhv6neUFxcHHqOENm4rg0jHtZLspgOHTqE5Vm0F4MjcTuUjSAWxYOLhomH8gmaJXHs2LHhZxD/U1+tP3w/LBAzZszY+jvahn/TdrHg95Hvh5dffll8f0NvL7jxxhtDS8X06dOrxMs2BJJtM57d2VgVO08AAGjKSURBVLNnh25n//rlL3/pRo8eHf4/ZUzqM6n0sZEjR4buZi+o4ZtvvgkFZH0Xiam2GbHC0WLQC21c0YaRELWdTWOkrzzOjjvuGLz33nth6QhK3USWx6FMSf/+/cPjsH79+jCLd8iQIWF5nGXLlm19kYlZH8tKUCbiwQcfDLPEzzjjjLCsxPLly8Pj48ePDy6++OIq5XHy8/ODm2++OSz3MmnSpAZXHieZ9rrhhhvCjPknn3yySl8qKioKGgrJtlk0DS3rOdn2Wrx4cZhJf8455wRz584Npk6dGnTs2DH405/+FDQUkm0zxi3a7NFHHw0WLFgQvPTSS0Hfvn3Dqg6GkSgmFOsJq1evDoVh8+bNg5YtWwYTJkyoMklTQ4t1waxZs8J/85N/x3rx3vrIHXfcEfTs2TMUNJSZoOakZ++99w4n6uhyQf369QvfP3jw4GDatGlBQyKZ9urVq1fMvsRE1ZBIto81ZKGYSnu9/fbb4QIXsUSpnGuvvbZeLmzT1WaUOrvqqqtCcdi4ceOgR48ewdlnnx2sXbu2lq7eqIvk8J/EbI+GYRiGYRhGQ8JiFA3DMAzDMIyYmFA0DMMwDMMwYmJC0TAMwzAMw4iJCUXDMAzDMAwjJiYUDcMwDMMwjJiYUDQMwzAMwzBiYkLRMAzDMAzDiIkJRcMwDMMwDCMmJhQNwzAMwzCMmJhQzFLYMGfDhg22cbthGIZhGLWGCcUspaioyLVq1Sr8aWSeZcuWuauuuir8aRiGYRhGHROK119/vdt1111dixYtXMeOHd1hhx3m5s6dW+U9W7ZscRMnTnTt2rVzzZs3d0ceeaRbsWJFlfcsXrzYHXTQQa5p06bh5/zhD39w5eXlVd7z6quvup122sk1atTIbbvttu7BBx/82fVMnjzZ9e7d2zVu3Njtvvvu7v3330/6WozsAYH4xz/+0YSiYRiGYdRFofjaa6+Fwuvdd991L7/8sisrK3Njx451xcXFW99z3nnnuf/85z/uiSeeCN//ww8/uCOOOGLr8YqKilAklpaWurfffts99NBDoQi88sort75n4cKF4XtGjx7tPv30U/e73/3OnXbaae7FF1/c+p7HHnvMnX/++W7SpEnu448/dkOHDnXjxo1zK1euTPhaDMMwDMMwsp6gjrJy5UqC94LXXnst/Pe6deuCgoKC4Iknntj6nq+++ip8zzvvvBP++/nnnw9yc3OD5cuXb33P3XffHbRs2TIoKSkJ/33hhRcGgwcPrvK3jj322GDcuHFb/73bbrsFEydO3PrvioqKoGvXrsH111+f8LXEY/369eH7+Wlkno8++ihsb34ahmEYhvETdcaiGM369evDn23btg1/fvTRR6GVccyYMVvfM2DAANezZ0/3zjvvhP/m55AhQ1ynTp22vgdLIEkjX3755db3RH6Gf4//DKyR/K3I9+Tm5ob/9u9J5FqiKSkpCa8j8mUYhmEYhlGb1EmhWFlZGbqER44c6bbffvvwd8uXL3eFhYWudevWVd6LKOSYf0+kSPTH/THtPQi3zZs3u1WrVoUu7FjvifyMeNcSKwaT5BX/6tGjR0ptY6RGmzZt3Iknnhj+NAzDMAyjDgtFYhW/+OILN2XKFFdfuOSSS0IrqX8tWbKkti+pQbHNNtu4f/3rX+FPwzAMwzDqqFA855xz3NSpU92sWbNc9+7dt/6+c+fOoVt43bp1Vd5PpjHH/HuiM4/9v+O9p2XLlq5Jkyauffv2Li8vL+Z7Ij8j3rVEQ4Y1fyPyZdQcZKnPmzcv/GkYhmEYRh0TihSeRiQ+/fTTbubMmT+z/Oy8886uoKDAzZgxY+vvKJ9DOZzhw4eH/+bn7Nmzq2Qnk0GNKBs0aNDW90R+hn+P/wxcyvytyPfgCuff/j2JXIuRXcyZM8dtt9124U/DMAzDMH4i39Uhd/Mjjzzinn322bCWoo/1I54PSx8/Tz311LBsDQkuiL9zzz03FGZ77LFH+F7K6SAIx48f72688cbwMy6//PLws7HowW9+8xt35513ugsvvND9+te/DkXp448/7qZNm7b1WvgbJ598sttll13cbrvt5m677bawTM+ECRO2XlO8azEMwzAMw8h6gjoClxrr9cADD2x9z+bNm4Ozzz47aNOmTdC0adPg8MMPD5YtW1blcxYtWhQccMABQZMmTYL27dsHF1xwQVBWVlblPbNmzQqGDRsWFBYWBn369KnyNzx33HFH0LNnz/A9lMt59913qxxP5Fo0rDxOzWLlcQzDMAzj5+Twn9oWq8bPIcsayySJLRavmHkonE7IAKWN2JXHMAzDMIw6FKNoGIZhGIZh1Cx1JkbRMDIJVkQzrhuGYRhGVcyiaBiGYRiGYcTEhKJh/H/5IrLS+WkYhmEYxk+YUDQM58LyRu+++2740zAMwzCMnzChaBiGYRiGYcTEhKJhGIZhGIYRExOKhmEYhmEYRkxMKBqGc653797un//8Z/jTMAzDMIyfsJ1ZshTbmcUwDMMwjNrGLIqG4Zz78ccf3eTJk8OfhmEYhmH8hAlFw3DOLVmyxJ1zzjnhT8MwDMMwfsKEomEYhlEnKS8vr+1LMIx6jwlFwzAMo85BmMjzzz/vSkpKavtSDKNeY0LRMAzDqHOsXr3arVy50q1Zs6a2L8Uw6jUmFA3DOdeiRQs3duzY8KdhGNnP2rVrQ6GIYDQMI3OYUDQM59x2223nXnzxxfCnYRjZz/Lly93mzZvdsmXLavtSDKNeY0LRMJxzFRUVYe1KfhqGkd1s2bIldDm3adPGLV261JWVldX2JRlGvcWEomE45z777LOwwDk/DcPIbtatW+eKi4tdp06d3MaNG0M3tGEYmcGEomEYhlGnYMeq0tLScNcqsp4tTtEwMocJRaPOwG6Ts2fPDi0IhmE0XHA75+b+NH3l5eWFSS2GYWQGE4pGnbIifPDBB+6LL76o7UsxDKOWE1maNGkS/n+zZs3CHZUsvtgwMoMJRaNOFdjlhVC0mCSjNvjmm2/CxYpRu4ksPP8IRMD9TCIacYuGYaSf/Ax8pmFkhB9++MEVFBSEk8ScOXPcyJEj0/bZQ4YMCd1XrVu3dulm06ZN7qWXXgotHlhBeDVt2tQVFhaGL75T27ZtXfv27dP+t430smjRIvf999+7wYMHh/fQqB3PAuEnXbt2Df/N80SZHOIU27VrV9uXV2+ZP39+KMZ32mknl5OTU9uXY9QgJhSNOrOn6+LFi0PrQX5+vvvyyy/dwIEDQ4GVDhBrHTp0cJkAK+iCBQtCCwjfgxeikZhLqKysdNtss407/PDDw3grIzsheYLFCveTvjhgwIDavqQGCWKFcjiNGjUK/41o4cV96devX21fXr2EsYqKEPT7xo0bhwslo+FgrmejTrBq1apwgqCEDeIQqwJWxXTx7bffun333TdMlslE4D0DLRaQnj17uj59+oSFvZnUeCESqQWHCDGyF+5jUVFRmESBC9oLfaNmiRV24uMU7Z5kbvwlLpS+/8Ybb7jvvvuuti/JqEFMKBp1AqwFlMFgNYv1gPppWBUZwNIBA9+sWbPcCy+8kLbP9CACvfUjFhzDwojV0chuoUgf7N69e+h+pk8aNQ+CJdrtj6eBhSQLSCP9sIglhIZFLR6RV199Ne3jpJG9mFA06gRYC4jn87AjAwHsiMV04OuwMQlNmzbNLVy4MC2fi7Ag9rF58+bq+4itwqqJxcrITriPhD1wLyn2jBvOqFn8jizRQpF/I2SsnmL6ITQGC7pPHsIrQjsjFnkOjPqPCUXjZzDgEri8YsWKUOhkw/Wwn2t0oknnzp3dV199lRbLjt8vtkePHmGg/PTp093nn38eDpLVgUmNz2vRooX6Pr4bFhFz6WQnWHxZrHjBz/36+uuvw7hFo+bAYog48aLFg0sUt7MJxfTD+MoiyceD49HBsshiGje0bZ9Y/7FkFqOKIMOq9emnn4aDAy5RJkaSPIivw4rHCzePL3ZbE3AtTBAMTpEwWSNmsSrus88+KX8+lkkvNhkEWTHz7xkzZoTibY899qhizUxWKCIm4p1Pe2IVQfiSpGNJLdkXF4e112fV8hNRjwuamFOjZmAcYPEaK5SD5wcxv+uuu1pWbhqhj5NVHmnFxbLeu3fvMKabRfCIESOszesxJhSNKgLRl4jZdtttw1gUrGFMiFhPvJhBKPbt29ftsMMOW4veZhKuCWsBg1M03qqIuCJuMRUQm2Q9T5gwYasQQBwTD/nuu++GAmHUqFHh904WBGes644FfxPLJi/i4Iz0Qz+iDmeXLl2SKkeE4Gey9P2d/gJY3uuCUERc8Tzz/NblCR3BLl0/zycWxUQs+EbilvR58+bFbE/GRwwI1BUlyXD77bevlWs0Mo8JxQaMF4iUPUCM8bCTjeutWfxk5e7FE25YzmEgfu2110IBufvuu4cWuExNPkzs1K6LdjV5uGbiCrEqpioUSTbhcyhPEwmDIyKA7GrEIlZLhGkygyyr8XjxiZEDL24cxIcJxcxAwhB9l1pwyQhFBL8vw+LhfNxvWJ0zUX8znc/QzJkzt/ZFnhPciAgr+jg/tWSrbIJFlLQ4ZYxg0YeoN6GYHpgXaFMWVrGg7xA3iguavoWVMZX+yfOF1yWbn6OGjAnFBgpWOFaCDAKIJCyI8dydWBQZDHgxSTLx/Oc//3HDhg1zO+64oyjmqgOTMNl12gDCIIbFc9CgQUkJOW9pQYhiIXrzzTfD7xIp7JhAEc8IjNdff90dddRRCbvdcZMhMHHXJ4pPatl5550TFphG4iEG77zzTtinEOO4KL1lMN5Ehkszun/7RQrHsnmCQ1zxfbEmsshj8se6yPfyBeCxZu+5555J9dWahmcVESiNM4xfLGaxKvbq1avGr68+whhP6AyLWImOHTuGiV0swLC6s8hNRKj7hTRzEeMronPvvfcO48SN7MKSWRogTBw81ASFI4IQWsnGxPkYFSZIJt/nnnsufNjTXceMlSZWTE2EMsAwQBEvk+zfZ9JEOLAqvvHGG0PhHA1t061bt61bCCYKkxrXnswOHkzUltSSfhAQ77//ftj3+/fvH4oJ7n2igp97Ej35YV1EzLNIyeZ9hrGIM9kjBllIYSX3NTyZ5Onfc+fOdW+99VZWJyZIiSyRIHoR7tkM42Rd2AaSxQSL1kRCbnwSIBUjHnvsMffyyy+HixPG1ViCn2fm2WefdU8//XT4/8wjhBVQngzhaPUwswuzKGY5WNNSiY2TYCJgkEJYYUWsLlhVmCxZGU6dOtUNHTo0rdYwJnYsePFc24hdSjiwY4Df2isRsAgxIMaLI0Ts0Wa8P1EXN/cu2l0ZD74rk52Pu6zJpKH6DH2D2ETCJLCOcM+pDccCIBHBj0CJ5X7Dsk4fpV8k8lk1DQsbJvtYfZZ+SVvwQnzR5/g+JG9lI4h1BC9Wfsaxa6+9NrRenXbaaVvfg5j3i8ts3GIRQU4YAM81i/RstkSzaKYtE+nXPgmQBRmCnmeNhTshDnxPjnFvWADze54X+h33z4c9cJxnCZGJJ4Z5xJL6sgMTilkOVhAsd+kSDFgXmDSjM4irAw8zrh4e7vfeey9c0bPCZKBmEIh+MSklEhPFZMDAkohQZpBh8GEQYkJPRJwxqLG651xEYDwQcLyfJJ5EPh/xnEqyD1YeRAyDZjaKj7oGQo+kJL/HNnDPCdInVjHeZOQLC8d6Bn1cKbGK2XivEH+I3HgxrzyPiMkPP/ww7H/ZmKCDUPTPHePYxx9/7D755BN33HHHbV2YejESq9ZibUMcNbUHWZQSBpHtIQtcHwuqZOJXeUZ8dQzOxUrIs4dxgvvhd9ciGTLW4pyxm3OIeaTfDh8+XHV7GzWDCcUshwmIGLp0DNy423hgeYhTLfeiwSCNO4uVKAN4tDuOgYG/y98/8MAD4wpArpeBJVELIYMMk/+QIUMSOofPRwRgRUlEKHLdfDeuKV4sF24YBrxUguojk1qyUXzUJZisWLxwnyP3AcbSwcICi0m8uFYEvyY6+CwWX4jObBIn9D8sWInuYU6fZrFHrK6f7LMJFk9eNPBsAC5KXJe77LLL1jGGe86znS0JYX6fZGKc6R8IcsZG7g0ekGz0GjD+MJZWx5vFvaDv8cLdjBua7x7v+/r5ibmKcZS4xXR61Yzkyb4eavxssKdsDYNfdWBgwjqJyEl04kgFrDOINFaMPg6KF+4HrIxMqgQ+Yw2IF4dCDJl3NSUCVgUGJKwNicS4IPp8fTAGJsS4JqD5fAYuBEai+wKn6oL3SS2280H1LWr0ByzekVZgBAd9xRdal+B+Izo0wc/Exv3Ottg4xGsii5pIEFc8d9kWr+gTWbwQR8R4ovd8Z7ygkkE2gNeCsY6YcJ9x7p9v+l6icbI1DdfG4spXvKgu3BMsiYmKYrxOzCEsAp5//vmYseNGzWFCMcthJYUrpbpbyjFpMGlmspSNBn+TDFMGeqxkuIjjbYHG8WTLdjAQ810TGViw1PrPR8Tedtttasad/w6JbN2GwEesphpjw+TOZ1hSS+pgLcSayAQVy33FZITg0Hbf8TvraIKfe8wCA2GfLUH4XDOuTib6ZGNkCXVhrEDgZAvEvUUmtWlC0Yeh1PauUvQrrGKIRPpg5AKdcZBFcLY+3yx6MC4kUhUgU/BMYWBAtJLkYntL1x4mFLMcHhYeVlwXqa7wGWSxJjLI1kSB7ETELxMqg6g0mGNJY7BngE32s7ESRk8e0WDti7UtYCICjkE0nqUPN1l13Ps+qYUVdXW3EawNuK9kw9fW3tU8K/x9YsGk5COs21h0tG3fOEb7xxP8iAAWENkymSFaufZULEI+XpHnk5hcDdqGRRnuee/K97vYIOwQQ+nov35HFgR/tFWfhWHkVooIRd6DyNfIpKhHZNH/cOPTN2LdB8Yq7lO2bQNJOyPEsyF+kucOyyLPFQsfo3awGMU6AK5crF/E5QwYMCCpcxkMCVBnQoyM0aptcHExCZEdR3ZbNEw4TPKpxGYyyRH/w04BBObHgsmNz/fHads//OEP7qabbgoHJgkGd66biUp6HwM/n1/dor9MMH4CTiaTOxsgRpUgdtqgNnZsYJ/ueElbkZnsUjgGLsxEgumxOPJeLESphnYQw4X1r7rFr/lOPFdM9KnGv2nxiowpTNx8X9qYsQVhzt9iYufl/5+fLHSJA+WFOOeV7IIV8enx1kQ+j++KiOR31FEFFmg8gwjlWJnqXD/PMBZTRCzfjbbyC2n6hX8luqsS8Fm0Ge5+PECMu/x9Kb4O8ci4TjsmmlzI9+XZIh42U0keLKBpu1SKZ2cCngnGaRbNxJ/7PaeNmsOEYh2AgZZBAativDi6aLwYQ5hlU9A034kHnsGa+LHoXTL8tn2puG59IWSsipJQZHCmPSLbJJE4UK6HgQsBJwlFb1GRdjNIFCYtJjzuYV0SirQNkxnCB4sJAfs1Ge6ANRdrGH0q3rNCGyMyELPR18j10w8TjTOl3zGZkRWfrDUZ69esWbPCa9hvv/2StqRHQn9hoVLd8leMGdw/4hXHjRsXWtF5bvgdbexdwTxjiFusaIil6J/0YZ5Fxi+EF4sHxDSfzxjAwi6ecPTlVCKFIt/PW+74fC8U/fjCOdGLFJ7Njz76KBwT/c5TXugy3vDi3vkKDVwr18j94LsiHv1PzkEU8mJhi8DyllS+NyE2Wt/hGrnfiMpEhSJWNQQo15Ss0SBRvDu8Nt3O0SDk6dMYAMiENmoWE4p1BFbPTAB+4k0EBnZitBics3GXDyYLLBIMfGPHjt0q2hhkWWlX55ojrYrRIpSJi8E51cmY8zifenOxrD9M+skk4WhgdaCNMrXzTbpBXGFJxH2FRcIHxWcygSoSJmmsYFxHIhnjPpMdARFtqcCqwsSf6E4R3CueUfozVvJE7z+iC5HoE2tYsOy7775JbTHood9hTaWvVLcGXWS8Ip/rrfyIJNoqul20hahfsCGucAsTvkG/9n9j//33FzPGvXUwOj7R7yblhWIkCDwWLPw9BA8/EfEsIHxGtDS+8F76Ly++M5/jF5GRtSf5HWOsD03g+hgbGKsTbXvakT6z2267xR3vfGIj94B7goco3Yt/nhuuJ9sy3ml3xhCEMguC6iykjOTJHhOTocJgx0DEQBGr2n0ssOpgAcjmEisM2Ax6kcHprNAZzKtTEoEVKJN8rFhFvxtLqjE4fhcBKWGGz0/XAM6AjdBiMkykhE9tQ59DRGMlZuJDuCGEagImbBZGLDIS3cJNy2RH8HuhAQiGCy+8MPyOseB9LFCwwBF8n8guPoQ8TJ8+PXwvgfuIH/4Ov0skuz4avjuCM9V9z6NB7GLNZhyhrdjVhoS4VBdxtBF9ms/gsxCJPPtvv/22uLtN9I4sfqzAou+tiIwhkbGQPk6R55RrZ8eQF198Mfwb/N14lj6OI/wZOyN3suH/+T2Lb66H6+f3XAsCkfOSEeiMJYxFiWTMswDg+9BPeH+8jP1U4Fnlb8QaG2t79yFENc8kxhKjZklqNqvtjtLQwZXJgxzvQWHAZODE1ZPK9nw1CVYEVuck2/gEESbNWFt1MdDfddddCWcz+riW6KB2JuDqZPRxHufHGqhpez+pxoLz/GCH5Y3SD48//rgoOn0xc8QJ4kNLvKhtfNkjRIqP7eIeYjmqiYQc7jULKSxdicaWYanA1RirqgD9JNKFTPvzNx588EHx85hgEQ1YZdjWkoVKrO+OixP350svvRT2ZwSIj+vzwfuIxUQy7CP7Fp/pE+DSBQs2BBE/0x1CwHXSvxmruHexQEj5RBasab6kDO1Eu/F7xovItuJ3LKix7nIfENC4dxFz1fkO3B/GLMQu7ZFMDGMsuOeI8XgZ84w1WNMYz73bO3JxnS5oJ9on+nthiT366KPdlClTXG3BdSHSEcwsAoyaI6lezurqlFNOcb/+9a+zKjGiocAgxeCEaGCQjOWqYTXIQ80ERdxPXTDR++33+F577rlnOCgyUEUO6EwU9913X+iGYjI+4YQT4n4u78P9jGgeOXJkld1YokUols0777wzYUsM9wFrEIV+I4U41g9ekStyBlcmLAQir1jCgYmSLcliwX3mfiNmsJLutddead1ZJx1g7UT4IlYi3VY+sxjxny4rVywQ2lilEOjJWru4RsQ9IsRbsZmIowU/fTSyCL4U7I/4wTKI0GRxw7XhWvR9jjaiP2AlxvIVHUeLeEAA8Tc4f/To0QnFGyKUeGVLoelEoX8jAOg/XmhHC0WPL7SNldPfGyyEPD+MeZH3BAGGuKLfZXObEGJAX2MRGCvcgPHCe5K8u5/3IS4JSUlXMWr6P30ultuZ7VlxtT/yyCOhC5g42tqA781z6L+7kYUWxYkTJ7onn3wy3IN21KhR4coa15JRczDo+aDeSHiIsSawyTorLsRXXUmAQGhxvQz2TMKxtu1joPRlJP79738n5HbxcS0IRT/ZINSw1kQPhrQffzPRuDLOZ2CPdi8i1H0Rb+BeMbgyuPF3GfQRAn4P1N133z38N3UlcTlKID54PytpLFuI6mwqm4MlkUkmOm7NZxZr3626MIHi7mWii7fLSiwQa75cUnT9RJ+5jnCMLBVDTGG8vkef5noQhf/5z39CdyF9mO3JeNEHpGQrzmcxQL9k79t45Z7oC4iidGRN1wa+3iPtEv1McV98Iov3pkSKSR+zHd1GWCpJ+Mi2eDsp/EFyP/NcMd5HhhD58BeOpQMWcyxKGNOi3c48V4zNnsmTJ4dzTW3AWMn1MV7WhVCcBikUr7jiitDcPWPGjHDFe84554SD4emnnx7GBhk/h4eKVS4DHaIAF2t1RRUPCg+uN78jRhAPPgYHa282bSWWCHwnJmPaB4tctFDESuoHCt6HdTERmIwZUHEZ+rZicRPZPrTZ7373u9BaThsmgndtRceRMdDiQvIxin7yog/cfPPN7oEHHgiFLousW265xV122WVbtx+L97eZSIntwlKMUKGQb6LxqpkEYY+QZyyI5YpDbCGUMxG64utxYmlKtZyHd/lGui4RirStFyhMyJF1TGn7RL4PIgCBz0SMVYZQA66XST8RAYMljDZ95ZVXwsUBoSdeOLAg9AWdicFjbE5FKGcLfFeeH7a68waI6EQWb1GMtLBiuIglFGtjY4FUYbxjjIquvECfYxFGH40cs/g3zxWLg+ruoMMCiH6JUKWvRocqYflmIcLCBc8M13j99dfXWOxxNCz+eZ58XzAyT0oR9/vss4976KGHwkmSyQ6LDSnrrOz+8pe/pP8q6yiPPfaYO//8892kSZPCh33o0KFhmYnqbtuEFYJVN6s6rBXPPPNMuNJmBV3dGJzaBGuUt7pEWkX8Dgdw6qmnhhMn3zsR0U1b4K5gQPWulejSJbQdApK/QwwkojsRmLwYZCNji6L3BfZFYnGTIOCxnEQPxAcccED4kwVYIvGXfB9EGW2CuIxXWDiTMKF7l7OUHIRYp79mYhsuBCjPFtbz6sTlIdoQij5Olmc0UvR6Cz6lbxB/tDlCLRG430yyCHz6C/+fjHucZxohQf8gnpWFBqITSyMWOAQk104717UFYvSzigGCNvLJLdKOLAgaD65n2hiLfbZuiRcPxgWuPXrhSf9mIRbLdY5g4v2pWuu9S5tYWPq9zyKPhioCgBeRBTVtjwX+mmuuqZVYQa6R5wdjSW3vvtNQqFZqJjfrtNNOCzsSrhU6LUWLjZ9ANGNtnTBhQpidd88994QD+f3331+tz2U1ycBCPTAsS4gqHt50uJxYvSM8sXwhdLmvTFAM3AwqDFysJDOxqwECzhfmjYSVI1ZBJlrKaPzyl78Mf49VMZGBgrbieyEouPZoQRNpDed73X333e5f//pX3O8YWVoFmNAirR+RVo7IGm/RDBs2LBT/DLq4UBN99hjYEbl+oE83TCR+z+pYVgvahzZFpGDplMAqh/hP917ItDXWDvp9deO0iOUlPMEnOjH5Rt5HH5/IfWTChFdffTWpv0E/TPU55VzcrSwGo/dQ5/e0f7a7WBMBcc53YaxBAHNPcDHSZohG75aOLMRP//Ku6Hgu+myF74elLtKVzDNNG/Csx1oEMV4irn3fTAYfAsH8QftJW7vS5rh5AWsi14kXxMdV3nDDDQnVn81ECBYhCfF2DjLSQ7VStpgYWeEiKhCLPKwmFP/7ICLkLrnkkioCb8yYMeHkFo2v2xX5gALur1hxoAhOjmFJYXCtTqwoIoBrxYXFAJ2ICMQqcvzxx4cWlnTiB8TI7+PFE1X5uVaEIpM0Ig0xe9RRR8X9XCZ9rHu0K9ce+flYxDwEaXvLDSt8FkJSZiMDK2IFsYb7i4GTiYxBl8/HgulX+7hFtXtE3TySXnAhUp8xUXBhYmXBwprO4G4maPoEMaP0W1+EmEkLlxft6d2+CO94gp3zscAhbtORkcvzhTuWNmfcSUesNJ+J+w+LBX0L4eU/14cuINT47lidWTydfPLJGdshQ7vO+g79DBGDIKRvIRa9dd7HXkfecwQzgok+RuJQXYR+xPXzXVgU8/whhPi31L9pJ8Sx91YkAgs/+i5WcjwT9Gfp85kTWDByH1hM8T6uk3keTxnXSxIgBpGa9mQxLrHIZ5HNmMK4VFe9aVlPkAJvvfVWcOqppwYtW7YMmjZtGpx00knBa6+9lspH1VuWLl2K2grefvvtKr//wx/+EOy2224/e/+kSZPC99vLXvayl73sZa/kXuvXr6/BGb5hkZRF8cYbbwyth6xEdt1113BfXKxK1d3T1nCh5ZF4Rg+WLyxTf/zjH8MYnHTC/eM+Rro5sJ5QdmXvvfeOmy2NpYzsamKkvNsBK9gxxxyT9kxr4o5ImmKl+Ne//nWrixFr1p/+9KfQysAuGIlYsrFM+L1nPVjw/vnPf4ZtzAvXNrFerOb/93//N7TesJq+6KKLYpYa4j5h2T3yyCND6xpWDV/s+R//+EcYJI4VGctkPG677bbQuvmLX/wijMVMFNoCqyaWlOpsb8V95XtjocBqQAhAOnd+wPLJuBHPYorVGA8F1lisGbz4jtHbwuF+Srb807333hu63Og70UW56cvEg/k4Oe/OJBaK4H3ag3sExAk+8cQToZUbV5yRfrjnhIowNuFBIRkMy/n48ePdQQcd9LO+e8YZZ2wNScnWOYnnm3GF5/S3v/3tz45jwcc6iPWesA6sifGsZHg+GNOOOOII1bpNiAh9H28BfT9efV3ed9ZZZ4X34fbbb4+Zoe/HT67xggsu2JqYV1PwnbCK0h+y9Z7XB5ISigjDX/3qV+EAGb2HJuB2wx2EeGzoEMPhXViR8O9YmYl+b9FoePDTGaDOJHzHHXeEAgyXKpM27lbi5BItzM31MIAwMFH6BTcwAyDJJYic4447LmE3SDx8GQZEXHS7nX322eFgi7hBMCJC4l13NAzGgEA++OCDt/6eODSCxQnYRjTgZkG0R+/fzP1BpDFRMbBy3/3f8bFDJDElcg8Z7GhHRBLCMt7+t5Ew8CP8d9ppp6S3y0N4IeL42/RPhFImkiK4f8QASn0dmJS4DtqUtvT1NP2+3PTRyP9PBibJmTNnhv/P3/DZspH4rdnov74N/N639EH/O/o54yD9Drdouvp7JmCxQlw0LkZEFwshfvr/96WasvE7RCat+IUtcaLR/ZN/k/DB4oL7lY3uZwQdIpY+zljJcxed1MR3YB6lD/IcJrJtJ+f4OG7JqIBxgBAeFlqJ7r3OuM61cg+kigKE/XC9xEmziCL8hbZnLI7eEjMTEEZE7DPfvT7E6NYLocjqjpXL1Vdf7Z566qmfHaez8nsTij/FZGHpIt7tsMMOC3/HwMC/sZDVFkyUiEQeYlaJ1UkCwKJz3nnnucMPPzxcVfosXGKLyIwnllBLckgEn+0ca+AnS5q/gXWTARhBFp3RrOH3TAUsQwRtE0PnBRo12P785z+7q666KhQ4xOJEF8X2ggVhQ/C5X3UjHnygtZbIEgnxnsQcEndHiRAy5BOFQZKJiJgh4h0TjdUhXok25jzEWyb2j428RiZxgtCliYf7QdwRojKdxeKZSEgmi1wgkGQWDc8DYiOy33rBH7nJANeH0OR6ieNi0ZSNYPGmQgUWWF60Q6wEAJ4bxvVE+2pNw3UzbvnM6Fhw7dw7xHu2CUUEGsmNPukMIUg/jy5cTf/j+WeeTXRsZjHF/UMMIuoin1+EHuMaiyTel+jWlpGx4WyCIMH9wJJL0hvil7HEj9k8LwhG7gXPeybiBxmz+L54QaR+YdSwUPQuOybm6IcAVc/Ei0vH+AlcyQS7Y47nYWHFxUARa4KqCRicKJgOiLt0VfRnEKDGJgM0kxKB/2xNxosVJkIZi2WyAwUuXV+CRBr4jz322HCiRsixSMGamShYIhHvXD9tgwvx1ltvrVLMl9U6VsUzzzwztG7GWrmSzEFSS2TdPdqAz0Y4Jmrho30Qh1h/SJYYO3ZsUm2G25+/i8BNZH9vBnfuEe4bRHeq+/cmM34wcSEWYwlFxhAmNKwo6RSJ/E3qmSKKEYDe6oQlJPreYMXk/b4t+H9fGid6Nyp2TEEosjDKVqFIsheLFvo0C1TuOX3Y/+RFuyNOGLvJYq3u4i4T+LI4PI+SpR3hTn/2i79sgnHX75aF25kFOwkl0UKR5517lezWgCzaeY7xCHivR+QOQIz1yXga6Bfem+N3tZLgWhk7sfh6scjiyr8efvjhcBxkTPLegOgX4yaCNJV5AmuybemXhVnPpOxHw0RLjSWfmWb8JGKYjK688spQyPAQYKLP5FZmGlipGEiYhInFSze4NLDAMSA+++yz4YqZvsKLyQfrHy7eRMuDkIGNq5z2it7xI3KQYEtJ4pcYjLFkJlp02JfFiWd9YOBlpY7VkHOi2w6hiJUmcoBLpCxOLLAGYp3l85gcI11v8SBGh37md+bRLIMs6pisEE0IoJraDxyRzXejzSMnfIQLgh+rV6qFsyX4nkxgTGi///3vw1qZCGr6JWI8Etohsv/QnghMzo22WDCxEfOI6CS2LNu2VcRyy3gDFJNHgERvj+djdy+//PJQEGM9JxY91lZytUmsQtteDPm+63do4bnhO2XLDjX0tUcffTT8/9/85jfhPaBP0v9i7WmfynX7Khh8d559xk2EKEIRgZisW5ZzWSQxNki7B8XaSYgX8x7Ps7cuMo7j7YhX45KYd559jBiE/lR3H20jfaTNx8RNRSjGckk3ZFjFM5EwcCEy2J0lGdJVr5ABlZgqwMKXqUGUAYMB+9JLLw2TTw455JBQELDaxXVLkgar/kTwBbVxX2irTAYVXMeIjERrVPJeH5+YyD0ZMWJE+DNWaSP6PoN95Io9VaHIyt+7ehIt/B0Jq3ZW8ZG7jERDiQvijxA3TFqZEIm4CWNdAxMW1orIXR2weLGIQZSl25rFQs3v4sP+4ExExHF6i3I8vNsZkRhd1gero19k+NjHbIJaoCzg+b6EZUgwFuARoO9w34jFzTYLjbcoRgpFv7Wcr/HJgpKQGr6z3+qvtkEIsojFu8AimYUsfZyFL9fp3bTp3AeZPo+Vm/ETL0MqsXu+yLbmdtbgPuAdYQGCRRFjCfqAmHLmROLLEc24rZkTDjzwwNCqiFUSrw6/x3NpWwRnB2kNRkIQZduquq6TLgst8Sa4l7A6+Z1AMg2WGeprId5wtyOkGNyx6MQbyBlYWQ1DvCQVRCSuYSxoJCkkUoCWuB1W4Axosaws0fhMXax1sSZRJllfyJuJy7srvZUjGbzFEvGU7ITtg/xZxccqhMuCBcsd15eKiyvRyZEMSOJXo/ftRZRyv3xiAgsYrBfcM8RYOuMjWWSRuMVkg2UESwUQOwyIjHjFgmPFJ0a7n/29ysQWhanC84Ubn7Ym/CWRBQoCkeeBcRw3dDbVa/RCMfJZZSxBBGHxBb6rX5hlS+Ft4mKxpGGVQxj5Ba9feCZaYD8R/CKMRSDPP/GIqYSTEEbj2y+e2zkRWIgQfoW3hAoQWPEZ4xCHJBAeeuihYdv8/e9/DzPa+R4sWKjMgYhku1Ouyag9UhqVSYKIfhGjQEY0HSvy90b1oPxAdQdsRBcFpAELX01v84W1jUkaNx3WP66H3U+0iZWJgSxirJGxMuyjYZXOih1YwSZqrcQi5BNSmCQl6xpCkIGXa463dSBuMu4Zk2+srbfiQYwhf4vPSHb3D3+tWAt5RYKARTwQe8SCLh2Fr2OB5ZoJi7/nxX4kTAQIRQQlVl1ccHzfdF8PblcmTAL9sWb4e4vY8MWDfSFtCSk+0YO1jsUX35e/lQ0gkJlkvZBNdPGOmCG7n/EBocD2rNkgfhEJuDJ5TiPd/1iisSJGLqa8UMyGECi/HzvXzcIp0sXsBRj9P11WM/4O/RqhTx9PpmpCJHhN6EOMQ8lWUKgOPEdHH320+9vf/hZaHRk7GSPwUp577rk/W3QaWS4UMQ1HvyiTgumYOAP/O19zzEgdBki20asOWNlwAzIBRJaAqWmYqCn7woCJEKRsh4QXYyTDJCogyLbnbyA8fCB2LHx5CvCuQ1ySrFy1+DhfozCW+zmSSLdzKpl+nOOtvrifkw0/YAWPOKId/CKDCZ/rRswgqjMVekAMbGR/jRXPjOWVRQD3gGtCoKR78UJ8nhdLJ510UhXBzoTqd7HR3M8IXZ8hLAlF+maqW/plCsQ5/Z9rO/HEE5M6F1HJoh9LM/fGl3PJBFhzmfxZOCYSn4i7NrJOINdFv0EwRgtFFgC1KXIJo/BZ9iTYRZdiYmHEgk5aTFXHi0OJnGSqP6Tb7Vxd6LdYHQlVIiSC+85iAI1h1CGh6K0V8V62D2N6wBro9xNOFgZTb01EJGY6szUeWJOYuH0MleRS0MriaIMk9e38Z0sTHBMPf5dJJ5ktCL1QRPxETk7RpBqfGIlP+iEjNRU3GgHtLA5wQdIOTEa0KTFLmbQok4jjE5Ak9y5inheTOd8x3fXPEB4UNSa0AGt0rMWRdz9rQhGrJ9eOpSO6fmYs9zPCqrZjqhBHFHr33oNULELE+1KxgQULizkf25wq9AesXAgQJnsyqydOnBhaj3AtRpYtStTtTAiF3xse4e9FIQLMi8fIDQUi4Vz6Ke51FjXJWqr4W5yDyzuWyKXPEJfINTAG8D2joW0z4X6uLul2O1cH7ithR//zP/+z1UKrxV4bmcPSirIcX0QW4YP5PVkQCAh2RBFZx9kAQc4E/+PWw2Jx8cUXVznOIOz3GE620j+7w1CrksEO61ms/Y8jrZV+5c2kQsYnL8mqyO990WhcRrEGUiaOdAhFrK6IRRJ/cKEmG+vIqpxFAaIW8UIcIJa7TO5eQDwfsXpMguxkgxuTyZTfR7cF1hSsiolmqCcDk7/fXYbg+Vhxj9x7HyvJ5Bir2HSk21mzDHPc179ELEaXPElUfPjM6eokFzGZIsq494nsgS6BNYn7Q7gIYw8lZxD0hFNEv3iGeG9k2Z3I8jvE6GlWQ/o3wl1KKouVyOKzhXFF85xjccLtStvhMuX55Jqj449ZnLCI4F75sYAxiM9mIcgrOlyEBQd9gc/jxf/7BQF9i+ugHfw+6AhR+jy/R3BL9xOhiAhnsYKoTNVVnE68aOV5zZYC7Dxf3BeeLQS+7YRU85hQzHKwChDPx443BP8mknjhwZJEHTXAlZmuuonVhcGVrDeSHXwJh0hB6K2JuFCSvWYy//iuzz33XDjBxarLFassDhM1k5vmruJzGLDIxuO6YwlFLIBMWljKqlsAloBvhCKDNxm7mlUrFogwLIp8LyZ5n2yTCehrBKN7CxsTL21PTCSTdrRQ9FsEphsWVd6iRtkk6W/Qryg9xITO9XlLdDKJLJH9gmxWYmMRaskKRYQqZaUQMfR5SvikUkILgeLjc1kwVdd7gCWWvkPZqUQyxDWw8uFC9Bm//v8R9c8880zoZkTgRdfPpF9JQhHrOGKG2GLEqD+XvsY9ZbHgrclYNSlRQ7wbopVzcG+SnIb442/wQoggFBGthG1wjIV2tNBF/PntJFkM+YSaSLCaaqVlGB/8wpP2TcTV63f6ylSJtdp2O0uQ5MK4zcvXijVqDhOKWQ5WLPZgxlLDRMzOIInGvbHSZrJjxe93h8kWsJxg4WSSwPVEQWQfNxcdP5gs7LvMDjGIJD4r0lLBhOKtlfGyqSUrAEIRcctEEh0L5IPoGciqm1HMxIhI4R5imUBc+3i4RGAyYzLFFZbp7bRY7TOp0h4M6t5qh1DEqkmiW6bxhbURBfzteDvbkIhC2zJJV0cogheKfhcMJtpEnlNc87gp2UEFsFaReIP3wLsmEwXRhehEnETvhZwq3EvaCQscWcb+hTDy/481jEVI5NaACDj//1wP/47VHvQLRB0uRe4de95Hvg+hirWS5zUyKYe/6feVR3RGupkjM5/pE77kin8PlnqqJCCkWYBh9USAEMuNcGSxwSt6AUqcoX8xLnuRyMLQt4l/8Z3jiS2+J4tN9g1nMRjv/ZSU8klZkfvepws8OYgwvyDOJhDvLMDIgWBTh+uuuy4jO70YsTGhWAegvAWDGAHqTMiJTCCR1kQmzGzcB5PkE1awiDeuldhFJgC/G0sqQg74rlhisYQwefM53v3oRShCLpWB1u+Jy4TMJB99jelwO0dy4YUXhnusIyD4yaRKyaFE4wxrwoqMMCMRCMhu9y4r7/bHUsNEmulrweqOUGfBgaiON5Hg7pwyZUp4HyMLNwOTva/1GFn0HOHCAiHaUomFh4UN/Yv7xEKFWnBSXUhEBgKB/sn/I4KI18Oixb0mjg+LMr9LJPGI9vW7LiG+0pVBThsS55lI5YFUYGGBZ+EPf/hDOMZhkaWMiseX0YqVgOXHNF8cnHbkOed+sUjjXpFBS0IYiyX6H/0ievzkc2hrXog+Fg68eMYQhTzLsWI9faWE6izCuBb6AQtPrUg4/ZPkUNzgQP+KFftYHfCSZJvbOXq+IGGMZ5z7k2xYkpE6mdnU1UgrDFK+BhyZnImUy0FUIloYMLN1ezFicphMASsdVgVf/4+JWNqNJRFoLwZ6rAiRweJeKCZb+NzDRORrKvqBNVKcpyIUmeAklzeWieuvvz7c7YC/TfwlE2u2FBQGEh5wnzHhRvY1JhuSC2iXTJeOwerks5yxEiXimsNiS0wZbszoMjnemoi7P1LgUt8N61+s+4XYYTJD/LDYIQgfL0B0ggtiBM8AopB7j6WE3VBIrOJeYxH3sXu4oRMJ4Cdhjb+DOxMPRF2CcBq/9SYxkZHJJbESWRBLCCofSoFQIx7QtzPHvJsaKyvjCc87NTXjLbKxMmJxxIJPbT/+P5MlYrhOnnFEoubeZ6eryD7KMxevBmgy8IxiCc9Gt7OHBYEPJSC8JF62vJE+TCjWEZg8GBCjy49IeGsiLrVsXB16EF1YYph4KcSd6G4s8UAAeHc7mZZ8PoLAl82JdmvjxmLy9u4sDe+W4VojBQOWUYSED6iPB4IfFxeiz2cnxwKxT5kTsjQZLCn9gqURC1Jt17nD8ub7GtcYHZDvrYqxyuSkE4q6I8B8SEMicJ+kXVpiuZ25P7wQKN5VHAkCBaFIvB39mnvDBH/WWWeFljLOJeMeoU8cLlY/6sUhKL0liXuNB4Hi174mHqIFl5v/+7hKsYIyDvC36AtTp07dulVfOouW1+T4RnwmYg/LmRcBvjROpFXXJ7L4mER+8sKq6vHVDHgf7lp2ispGr4p3P8daeHpYKPjYU/qS31s+XpmuRL0BLD7pg/T5yGzsaLCwx4rXrElI0OKeYgAgHMuoGereiNJAIfjf77CglcvxW+Vh0WAi9NaJbIZ4Ib4f1jgmVC0+kckgUXGEYEAwEl+FywK3LatwMlR5RYLAoSxIIpmHZCBjZUIkRdZr9NZErB+au5DzmABJfEHE42rj8yInuljg/qOIPQO5L4PC1liI09qCvohAw3IYK4kjUihmqh4f1kruL5McCQTJZA1LQtFbbBEvkZYs+gdiXStXhTUcYULWNwsP3kuMHEWXEXUs9rAiYUWM3ms6st241yQEsaDAGsZkTswg4wD15cjWJdkJS5PfIo7310W4ZwhonhviPBG+WiILVj4fH8x9xzXN7yM9ClgEaTeer2yOZ/PCjMUDlsVIGK8Qzgg6XK3eRQ7Vqa/LWMOzSxgLWeAIL9qeBLBYgpp7wbiFsYIY70w9y/FgPPfeNcSz377RyCwmFOsQTASsrInjI6PXwyTBIINowELh91Jma6RENnSvbRj0scT474LLOJbrlokaCxwCKxH4HC+UiUXzLuhYbmdW6ARJJ7JVFJOa/4zIVb1PZIlVyobvhaAj/gw3KQKE+4OrFrGCyzCRem64xig9Q7KDn1QpF1EblkUsDOwcBGzRGEug0RZM6MSLZaIGGhMrlmgggSORxJNIaHtEBJMf1whMgrF2ZMHahTWDZ9BnvMaLgUSoEHvLvUL0MLFhLWfyj1fBgAmbck0IQ6yETOZM8FwvLnGslmQ3455GVGJ5rMsgqulHwCKIxQWWW/pVZMkqxoHoGFHGEG9xBe4TVSJ8/GI2Qx/jOhnXoy3veA3oNzz3LIJ8MX4szywQEtmuNBIWzVTRQBAyh9DnEX/0MUI3GJNiQb9DpNF3WdQmOgZnAgwAPBssuIjVNDKPJbPUIZgs2NkEoUDgPitlJg9Wlj7wnvcgYniY0pVQUROQfII1ke8j7cbCoEb2GxYaJpDoUhqxQDzg/mNQ8aUlYlkrEXEElSMCmIDjue9wP+MOJACfOEveT9YvRLc7FiEsiEwGWA+wjjCxRVo5mCwQmlpAu4fzCCng79AXcEVzHTVdIJfJHIsH98tb5qJBJGIJxZrLC8tjOqEOHfGRWGZTyaymDyHYmIyZpLGK8nlYT5iMIzNtsVghWPgOnEcfjOfOpB/jLmORR//Ckk2fTNQ9zPtY7DBBI2Y5n9jdTO2sU9sggshA5l5QMgiwFnrroReC0aWeEDt4JRBbNb1Fabrcz4xTuJ99DDRuXh/WwRjjQ4joc1Q/YLxk7MdSnQiE4PB5vg1ZnBKew9+Ol/zE2MtzQkgN7YxAY9xJtmRXOuDvE9OK4OX7ML5ksj6sYRbFOgdZeASr87BTSoIyCYhEVtA89Pyb32PJyWZ3SzRMyrjlmFBJRogFkzeCCvcag1QiVjQm1MjsQFbDke5Ej3f74lpklR5vh42hQ4eGExIDKO/nfL/Kjt6uCwsiAyrXgVDEyht9bxAAvCeZXSI4x7uhfIxaTUAspq8liZDBOqGRqThFLJSILz+RpioQondp8VYaJtLICRRLFvcI6w7ixVsgE4GFAa5QFkSpxBD6vcxZZNRXkQg8FxRJp4397keR8YncA4RCtFD0xcBj1TOsC3j3M3HPWJ15YXVmjEM4+n3sPfQjoGpEIl4QYlrxqjBvsFAmHptwCMo6xROJWM5Z7Pq6sCyWuB4WtYn87UzAQplnkcUaRhMjs5hQrIPgJvCTBWKBGD+C+Zmw01GIlUEBwYIFDusKogwxitvCu375fSLZ18mAtZDVcaxsZyYIrAp8X4SH37EmESgP5F1QWGZiuUj9BMPAyefzfXlJsTgMrr40Du5nH5/IhB5dBgYRyXfSVr0IZSyExPslEyyOUER4YI3E4pQJsBri4sY1RWgDVm2fYcyAHc9K6K2N3mIaD6wkJMbgtpW2YaONiMVlIsWCXp26b14oImT5PC8UIxcUvh94KzbfORH3s5E8WM4Q1Z5IF310IouHZ9rvCZztMJZFxxXT17CKskAl5hZLGX3fl/SJXliyYGC8oA9S/keDNiMO0VtsL7/88jAeO1FDAmMj1xEZ141l0e/eEyuxK9MwXnoPgg+1MjKHuZ7rIFgnKNKLAMFymI4sRyY8v/UWn8eKnZU7gwkPZfRPBggEIyLCF9tNV+22WHBdfG+EsI8RxIrGIBbP7cB1EdPHzgw+EDqSSMsklgwslghR3LmIBsRfrCQXxMlrr70WWta8YIjl7ufzExHwrNSxjHAfEs1URwBzHcRfEi+IkEsHWDSwVuAGZOKKtLDSP5gosEx4y4YGbcl1MjmS/OOFWSxYnBAryiIE1z4vrLeEUnCe7+s+iSOyxFKqYLGiD9GXiE2MFZ/ot1jzlixfNodnMJM73jRU8JoQykH/iwwVQfQQDhBrrMFSn86SMZnAFwAH+o0vyk+/xqrImIZI9Ek8Pss5Fjx7LFApo0SsanTxfw+1JHn2iOskKz5ZsBryLEQvgHkuEb2MPXwPBHxN4ouV46I3MosJxTpKumK9WIEziDAxMyBh/WEgJrBcE34ICSZ1xCKDGm5ABJHfjaG6u5JEwyTOtXlrINdICQySeBjE4ollrISx9n0GVsQMolhqEWheCCHumKiwhDFI8u/IVTjXw+BMO/hs7ehEFgSWz5SNB2IF0cJ3SqakEbXFGKzJ/OU7VCdeh/uKOGMAjnSDY8Hh+5J5STsmsz0cbcY5fC5WO00oUribvugD/BHruM140SeZHLkOxCRgeUy2zh2WaL6Pbyf6lN9ukPvtJ57okiy4tr0li/6AAGYhYUIxM+Ap4RWJd//HgsUqz2Micb61Bc8U4yNjDONO5HOO8EEoeos2YlmLO8YlTd/nM1mwxtpdiP5M+RueQcoEJbufNAtgxHdkrK6H74CI555QMJz31GS78/cZ76guYGQWE4oNFMQhL1aBiE4mZia+RAUAIpL382LixxWNWCRpAxeoP54OwcjA793OHgY+/i6TPi5i/laqYMFDyJAYEgkDOoMvn+0FRKQbDIsrogUx42Mcoy2KCFzERaK7N+BSQhR5C1Yi8DcZpGl3xFgqBdZpY6x07IXr4474/rjtcbHzvatjuY4UihJYGxG8/B0yPPlOxENiKeXauM/E4HLvsczQVsluVcekyrl8bqSgpi8hFAnSZ2LkWKQgQSjy9yL7M9fHIsLvCGJkFu4b914S5jxjPk4xG4UiizA8I2PGjAn7IRbTSKHI4tR7FPgZLZKjYYFD/2dxRbgGnxu5kGVMYltEIH49leRGv6OSVF+Wa0DMMn5Qko0xmjklmRJV1YEFXk1sD9rQsdGtAcJDzWDEipUEC6w0DFLJWIkiQcThniVmhWw03IRY37A0piPYmc/AuhRd6ofJHBc03yeyhlqykw+WUD6bSd8H0HsY8MiqQzAiBqJj7CJj4/iMaOsWkxaxU4kOnIgThClCJlGYHPyOBezYkEypHKwB7LdNPTXq8vm2xp3LLhkkFmFZq64QYkDnM7BAx0rY4Zr5+0BtQW/BoE0pmcIOJ1wT7cM982IymQkJSyUTNS5+/l5k/Km3NnsXOwunyEk31rZ93v1cFxIosHpTG5LFDkW8/QKL37NgJJSktmrjJUq0+z/WOMQ9ydb7QZuzKEewMSYgHCPbnL7MWMwClISeRDwDPCuIYtzZxBF7+FzKRnFfGZuxvKcCz0usuOvodmcu4XsxDrNgJXyDvkb/4neZiuXlGa1rOxHVRcyi2ADh4eXhx4qSbhex3z4LscMKEwuSj/NjAEzVPY7lLta1YulCyPF3EnFBR8OkgkDGDUQiC5mvsUq9sKLGYoHAjhQMPjkG4RG9YmewZoCMFhgaXD9Z0wy20fsPazBYYllAYOK69iU2NHCXkwTlg9ERuSwcKBGT7nhT2hjByQTCvYouNE3mIt8Za0SsSQ23L2KY2nhYXBEM8eoQRoPFm77J/WVi9XURAQsOn+d3AomMT/STXLRAwVJMP2dBlEipptqC+8uCgLAB+hSLHV6IX59hy2RO347lYswWfCKLJloQipGCKVtgDGM84B4wRrIA8tsORsb2UUoJj0Ci4xjP1ejRo8M4RayKfkcadi0hdtoXMpfiFxNxO0fWsJTg+cS66fsRApV5hkRI/k0iJN+fcYV5wL9oi5qyPhqpY0KxgcGDz8occZVukRgJgwDxKwwyxK/4xAMG8mQGBiY0BhfJ9cGAilhjIML9ncgWfJEwoOEuiWdNpa0oD0GGc6Tw4zyEB+IselcM2pl2SHYLRawOiFKfwJMIDLiIL2ILiXOKJxQRxJTfYPDm+zBBMeGkSyAiQrjntJlvW6x2sYQik4svII9FWhNd3G8p1lQDSymTGRZoJmmEIQIqcpJm4RRLKPrafLGuC2FFQoF3i2bj847lkEQJXISxrhFBgLULtzvPUfSuRdkktsgO1sYtnjWOI34zmVyXDPQN2pXkDy/E6X9cK894dBJIsotdrJAIRUrrMAbyvQnRAPaIT3ZB5eH50NzO0dC3eNZ5YTEls5qFCe5rX/uW8RYLNgt0nkkWMN6qynk8m5mcl4zUsDvSwMDihFirKcsBDz5xbggGBCPuL/5+ohYYBlJcoVrWMJ+FKKVMRDKxfcD7ubZEsiUZMBkMeW/kYEZGNVaM6MBznxGbaHyiB1FCKADxeskkalD6gvqGWHKxnmHFjQWTFlnzDNBYD3HhpntwxpLAPWNy8EIRQU0tNyyCkdZSsjx5H9a5ZGMOEwHRgLsbIezjDlnARO+Vy/WxrVmsHVn4DrH6LJ/nM6Y1S1dtgauf74oIloQswoS+QvsQC8oYkY07OnEf410Xzxr3A1GZLXs7I4x8oqC/B7Q5Y3A6ditClLF4YgHGIpHnm++P9ZwFYKog7vBuVCc5jmfcJzhGLyS5RhaJ/OT5YW7w8e0sXlP1QBnpx2IUGxBYDhAvrPRqMtibwQLhQ0A1MX1M2onGEXG90UkEsWBix/XLwJtorJW3+CVae5LBiwE/um4Yv2OnhGhLgI9PTCW+D/GK4E2mLhyTqC8lIhXgZmD+05/+FP7knlCjLd0ikQkdSzDXExk7iusZ6wnfye+lzKTm96w99dRTM2JNQCxhVaHfe7jnPj7Vg7WKupRYNSMnR66Xex/LEs69xwKXTPHtmoKJnmvGupzI4onnjBAGvm+2fR/GLi2RxcP3ZHGVLXGKLCqxnCHkoj0LvtRXOvYrJi7cP/d4CxBbZDmn+jzR3lxXIm7nVMAVjqhnfESMMm4R9kJ4Cc8T4wIhHdlyHxs6JhQbEAxYDFapuiKqC1YZrG4MmgwE8QKcY2U7SzDg+n1ImSATwdcr9Nvp8bc09yGiEssL7pN4+H1nk4lPjASRhQs6maQW8EktxB9Gi0xE0S233BK2PVZadvDJhHsOayITgO9nXrhzj3C/gc9+JkaS6yJ2SyubkyoIHu4rLufIxRH33FuePFwfwjl6ZyAmTM2yi6inr2ZTMggChRgxrFiSZTkWlHfiGWWs8Jn8dSGRJRIs07g0symBJdb+7zzjWKnT0c6MqYyTfkwlEziZ+x4Ni2HaOtlQnurAc8qCH4MCcZos/LkOwlVqawcY4ydMKGY5TEDJZLFKMInxsDFg1XRh1Eh8WRtcdn5/am2SR8glavHjvXw/xFUikzarVV/2hYGWto4X/8bgm8iOHLgrcSEnUj9RaicsXEz4yRQRxmrGxMR3oX5aJMQB4v5nQL700ksz4ppDVDGpE1TPRIi4jpy0faIQQpG9n4ntRKDF2wYw1WuhL/A3oxcbiETEX7xdJRKxZPlt/bLJ+kFmM67NZOM5+a60F8IawR9vK8tUoV1xyfoC5/GeVyzTtHEi7n3GAb5HOsbN6kDb8T1ZBMVyoyaz8IwHYxgCCxgDvYUxVRh7GUdSrYRRHXwoBHHM7HOOF4oxhfhLo3YwoZjlMNliGaguDEasXiOLCNcWTNJY/xAQ2kSUqNs5EpJ0EEDRW2TFEhF8brKb2iNaGTzjuYR9fGJ1ijEzWPL34n2XSJggfZwf9Qe9oKUgr98XmZhK2jUT0FcRZVjZuA/RbeWFC5nwPuAeK2h16mBqLmfEkrdiRoNbLZ7lyRdM1+6jt7wkasnONEzyWE+ZYFOJ82KiRigiGBGciWy7mCiIN/oI95//5xoRdvHGOISi5P6PBpcm/S7VklnxYOGGVZ4wF+55rIUcwpf+h1tVc9/S7zk/HdZohBVhJRSgrk4mMfcl0WznTMJYxvyHhZsXi7p0uOmN5DGhmOUwyWGpqO4DgmXF7yeaDSBYcS0wmMYaJH22c7ICAjGMNQtxpVn9EM4IGW+tpPgtEyM/431+IqIAcYTQq079QSZ7Jppka9xR5gerMStw4pXI5GXfZMCls/fee7tMwOTC5EyfxWrphXikUMSKxz3l3mCxwkJEZma64f7QfxA8kljiWuLFiPF9WNholiwmNCzTkRmctYVmRU0G7h2TMxZq6uFVd/zx2dfEpnJf9t1333DbOf4Gi0YWVtre8YkksngQiTzb8Vy6WKmSsTrSZ3mmfDkknm+umVJLCN9I4cj4w3sit52MhS+Tkw5RSz9k7KtuEkhtuJ3jwdxFe8fzQhmZwbKesxwsP4gpVrCprvCYqLGK8LBlC5FlbbAmRMfyMeDGy3aWQFxRsoQJU4oRZDD0W/D5SQN3aHTB7VhwHyj9IuHrJ6Yjc5S/5eMuExX5TBQUCKeQ9hNPPLF1i0YmrfHjx7tMZ9RjTfRw/8jCjgSrIrFbPpYq3e4tH59HAXhiJSXoX36/ZqmEERM49yCe4Od7+wm/Ntx1HsQKojW6VFOqCxUWFSzaEEK+pEsyca1YZOl/PFe0EWV6uD7CMjyMS35Hp1jx04i5RBJZPLwXUSFlFHNNjDt8D54LRDHfi74QK0aZ5xkrLf2b/ozljmvmOeOzCOnhOzJO8x6EI9dMFnm80li0qd8HvTb7TSSMNbUdohSrLzJ+kfjmw3qMmsOEYpaDkEHQ8IAkW/rFw6Tp9y7OJhA+iEXqtzFgRiYbIOSwZqSStYcFCKsWRZy91SgSvytHqu5OxCcDlTRg+cLAqcYnxoq7xDLI32OVn4iVksLUzz777FZBi3XpggsuyFhxW18vDQtRpEWDe8zfjCwphLuR/owoiLU/bboSCOKJJa6TPkAbSRM6152I4Kf/IoQQIKlM+Nxbrpt+yXXxefTjZGozIlgYH2jfdFU1oH9TQon+Qywhrmiukfvq9yyOhGN4QLCC+/GKcYc+zAIi1nUh2BgHsBb57esi8XUskwnj8M9e5PaKWCW5P/RVxkOsb3w2FlPEHRZu/g59wYsk+rS3fJMRzveIzIjn/bx8iRovHBm/Egnz4f6mq0xOOqBteNW22zkWtBMCHa9PNoRQNSRMKNYBeEDIBmNCS/YB8TFYuHmzsSAw1j/vuvG161jlp+J2joQBhb2DEcnRLhS/f2mqGclMJExETIaxhCKfz2SXrt06EF+IFer+4bpDBMVzL/HdmHwpwss1XnbZZRm1WHhrYrRFyMcpIp59exBHSvZ1ssXXk00gSGRRhQCKtnimYsny7mfcksmAsMKdidWfdqGvIlz4HQIFce37UnRb+RImvhwRVqnIWpHpjilGeCO0eF6xAPJdeU55FhDUiDyuhffz7DJucS08L/EWN3xvhBu7ifBsRn5X2obPTKaeH0I2cjFHeyJgeXZYeHNt/poYU3mWEeqMQ7Q7/8895TnDksW1JVI4P1I4JoqPvUykSDhtQfvT11IxGsSDdsg2t7PHJx3y/f11GjWDCcU6AA8IgzQPiBc5icKgx+CYiWSBdMBESA0trAm+fE+y2c6xYLCmzbBWRhfIZpBBlKbqWuF+MFCTICIN5kws1d0f2cOExfViHX333XfDPamZCOMV4z7ppJNCsUNcYibvP38DCwrxgNGTF23MgM69jRTOmbIIMMFj9UnUIoLI8ZnZ0eLbb6+WqOBncuX9fFfuT7yFGX8TCx3vpX4jixsEA5Z0+ijiBksTL4QZnxcZA+lLOiEueCE0I2tFphv+Bu3KCyFOWyMWcblyjOtnrPH1RpNdmPoxjjErsr9yH7BGJvM8cc+4Bj6L559rYsHFcxRrOzufeMaC2ruR6dNYHhG7mVxk8xz7+qyaF4KFAUKdNqZvZGLTBMQ+Y1c2uZ0j4T7Sx1k0Mw+ma4w1dEwo1hGYhJgAsRAl6pJihcogyQSSzQ8UgpCJZ+bMmVtjxhgMqlvjDzGCVZFB1U88TLRYXxhsI2HQZVeORAdfbw3D+hk58fgEmmR2VEkULEu4avnb7733XjhJ8z2kdiJOiwzITEMBdSyescQf/ZS2Z+LNNExyfkvFRPs7CxJEBZN0tFD0iSyJWrIQfAgRrL64aaPdmB76IBZY/ibChILY0fGnXrggVLgO+jDW8ei9ciNfNbllHe3MtSEOaXeegeparGknLJfPP/98lbAOxrBknyfuP1Y9rIiEoTAGJiJ+OI++XJM70+CO51nFsq0JRfoA7UCbewGczgL1vhZo9NiYbSBkeca0GHQjvZhQrEP4B4QVbyIDJxMLoiIb402iYSDHmoDbjcEvHRYwJk+sFJSJ8W4drH1MaNHWSkQYOwMkChMJkzuWn8hJJZ3xibGgbfhODJC46bA0JbMlYrpBGCMUxowZIwaYI5Z8AfJMWWZ8Rio75CQzydOeTNLEgEb3Ce4lyWSJik6+G9m8vqA8zyoTOiIZsenr+2EhZEFEUgShF/Eme/oTFuzaKpSvwfdJZyUF2hsBitUc0Y21mvZPxc3IfWBxnS1b+cULgSCZTnpGsD7TH4mTxLpKnB7zQKpCyX8egtwn8Plwn2zd69vDs0M4ANtNJhIOYFQfE4p1CAY8Bj8sbz5JQIIBFlHExFmTlobqrKpxQTPZI3rSlXjDxIMQYML2xW0ZXKMnD0T1ww8/7E488cSE/rZ3w1HAOlKYYMHg3mRauPEdSFhB4GBdpP1qY29UJitEceTeyNHQ1t69m4m4KqDfcN9Scb0itBGa0ZM0z1Cygt8LJ14sfmgfRCOxb1wjFmjaCitiJqzOdR1EISIAcU3b0a+TTWSJFNjZ6kKVyuT4eMxI6JcsLrA+03cY91lgMA/Q55NZfLEYpw/6dsVTxYv29e76mtzeNVWwqhKzT8hSXbjeuo4JxToGAwSrSSYdaeWH6xbhwyASWaok28FVhNsQC0u6xC2fg7gmyxbXio93ih5cmczJCqYGYaIildU3QhFB4UU7Az2urppIHEJ8ITiIFSMurqYtAYgr4klJoNDcjkw+fhLMhFBk4uOzKYeTivsTwRZd2qY6liwPfYDP5oWAxVXGdbLAqAuLt9qC9mIcQAhxPxAwySSy1EXoZ3xv+kj0d/U1GXHL+3GGEBksa77mYSIwRiCqCF/x5YDqqsiKLJfDOFTf+0dtk72Ba0ZMWAXygDCpRRao5f9ZXbHKQiiy4kL01LV6UwgfBsR0wqDK5EydNgaYdMW1ICh9fFtkfGJNxjcxcRAbWBvbx/mkDc2aCIii6MLb6QSR7ysDpAITLZbDyO38eL5StWRJ94k24F6ZSIwP1lieWTwBWLyysWJDOuH7sYCNLrzNuE5oB2N+pHWb5w5vCfHBicDYxHsJX8K1jyitqyIxulyO7QOdeUwo1kEYIHhIsCRh0SEWClcNK0RqnrHjAW7J6mwKX1tkYkLwcX2+sG66XH5YobCC+r1affxjpuITNcsmoiZTW5ZFQxA9rjBf6zKRLHzEeTK7e2D9TeT9XnxigUpVgNHnCOCPFLK0Jd8rW4ogNzQQMSwYsZLX9PNUW7DAZIyKNAAwriMgEc7RsOjA6h1vG0rAUsnnx/qcuoovl2MJLZnHXM91ECZEJkYefiZTXxeMlbdZK2KDdYKBNVYB7urgsxWJI8KSy6RW024QvhPWKqwvmYzJ4jviBmMFj0DGypFoggVxigiySDe9Zv0gqYmJALGG5VZKKMGaiJWkupmaTKL8DX99hChgrajvlqxshntK8fBsT67IRJkc/h9Loo/djjWu0y4sEgkz0owCLOxYzI4bN67eLXx8uRzmQiNzmFCsw4MoVkO/g4OhgwggI1USKbiQDznkkKSTUBAxDL5Yo7BCIZ5qWlz4OotkQGcqsxjXNqENTGRYrQmsTyZ5JrLwdjwLJBMkll8WQIhwSs0ghKPdwAhWPov3Vfc7MzH70kxcayqJLEZ68XsXNxQoMcSCluxnXMs+i18SyoxlPId+y0BpbOO5RVBm0xau6YQxF8+akTnM9VxH8fuZmkhMHNyzUlwOlrHnnnsu6RIkiBfEIqIFMVpbmaxMJvSFdMcq4gZDgDIQMyAfeeSRoTBLNsMakYgASyROEaslkxpuJYqFsz8w5xFi4d1sTIzEXJE4lA5BhyWW+0j7YYFh0q2tkkNGwwWvEH2b0A7G93jbUCIs/SYFUggHL57duh6TKEGCXEOxOtcWJhQN4/+LkyM8komjiwxCxxJVG/GJHkQYVoN0BXZj+cNSwc4hTEaHHnpomByVak062onBPF4cpc+MJg4XEL9kMx922GGh1ZS4XCZRXM5YGdMZc8XETE05vyOLbRFm1DQsVvziP9ZOR7EWv1TCkIQizwvjU12qfmFkHyYUDcM5N3v27DBOjZ+pxMlgfaqN+MRIEFdYAH32dbJgSSPeCVcvghPhdNBBB7mDDz44jEmsrnsXy0e8ayPWCGEaXaIIUXjAAQeE14Nbjs/BSpLOmEyswcSC4frmftaVGnxG/YHwB/o6LvdEN0rAC0JfjfYmsCjzCR/p3MHFaHhY7zGMaoJARGTWdpY5FjtfricZyx8TDAIN8YWYIy6KSYrvlM54RwQeFpJY+yoD1lyuAQtJrL+LOxirIqIVi2K6dxziPtJ+WFJrqhamYURCn8Nyj5s40f5HvyWZkdJokQtVnhEs7rU9Lhl1HxOKhlFNEDCpFntOJ0wSiCe2P0tEKBILxX7RWCMQYLxwX2dqhxdfeBthGutv+L1bEYIaka7pdCcT8P0J/retwYzaIpFyU5EgKInpZSMGv/c8Wc64pYlxtAWPUV3M9WwYaQpCT3aAzwRYFrDKIQLj4QPmjzrqqNCti/jK5DaAWuFtrpnfYwGpzRJPWGV9mRLDqCuwwGGRxWKLygdkTLPPdbq2QjUaNiYUDaMegdBB5BBnp4F7GksoAfMIo5qyOkiFtwnGxzWN0K1NmFh5pZq0Yxi1AYsrFlksthCLPEsNqbSQkVnqhFAkZujUU08NJxHcTgTvTpo0qUoFe6DmGvFVWEVwX914440/+6wnnngi3MKI91Co8/nnn69ynNXYlVdeGVo++FtjxowJy3JET2onnnhiaEFiUubaoq0kiVyLkT0Qk4Z44mddxj8fmlAkaQX3Km6p6haqThYEmC9sHQnJM7jPatt9zwRLfdJM7EltGJmEsBOeL4Qiz7ZZxY0GJRQJ0sU19de//jWMv7r11lvdPffc4y699NKt76E8ydixY8OJ76OPPnI33XSTu+qqq9y999679T1vv/22O/7440NhR1FTSm7w+uKLL7a+B0F3++23h5//3nvvhTFVVLSP3CYJkch1vPzyy27q1Knu9ddfd2eccUZS12JkF1jXEP7p3LWltqDfYSGUSv1QMoNJhXqINQ0TGc9UZJkcFlnEU2Ui7jAVLEPUqIsQo8xii2ebhDDDSBc5ASa0Ogji6+677w63+gL+/7LLLgtjMwjmhYsvvtg988wzodCEY489NpygEHeePfbYI1x9IQxpCmLNLrjgAvf73/8+PI6VCVfUgw8+6I477rgwYJhq+B988IHbZZddwvdMnz49tEIwAXN+ItcSD8Smz2DNhti3+g5W43POOcfdeeed4VZ/dRks7VOmTAl/RscoEeRO32IXmtrIhuQZw6qPxZNnBSjozQS3//77W+C9YVQDFl3UAaVigWE0KItiLBBQuIk877zzjttrr722CjPAEkhNOO+G4z24kiPhPfweFi5cGIq7yPcg1ojj8u/hJyZ9LxKB9+NOwwKZ6LVEQ/V8JvDIl1FzkIn70ksvpX1nk9qAfofY5RmJdjnTv6mrVlslMxCCBN57iyJiFvFo+yobRvUhdMNEopFu6qRQpKTHHXfc4c4888ytv2MCjLae+H9zTHtP5PHI86T3RD+IuKr83pyJXks0119/fShK/SteiRDD0EAI0i9ZgHiWLFlSay7nSCg94x0ZxFNhWbT+bhiGkZ3UqlDEHYsVQXtFu2opIoqL6uijj3ann366qy9ccskloQXIv5jUDSNVWJiwoPFb+mHJJv6SUItMlsBJNE6RgsK4yHCVUcajNkviGIZhGDK1GrVNLOApp5yividyj0oyNUePHu1GjBjxs8QQym6w/Vgk/t8c094Tedz/jqznyPf4zdl9rapolx6Z0PH+TuTfiIaJs75u2m7UPFgTKaA9c+bMUDBiySYLPxssdwhFXGTUccS6mO4dVgzDMIx6YlGkfhularSXj/PDksjWRuzv+sADD4QxgZEMHz48zD6OzPQkK5nYJ18TjffMmDGjynm8h98D5XcQcpHvIVaQ2EP/Hn6SEEA2s4fJmKxsYhkTvRYju0BAkciSDUIqXRALSDYxiTosuIhNzAawHmLxxKJIdmZtl8QxDMMw6njWsxeJlP146KGHqpQw8RY63LUIMcrSXHTRRWHJm1//+tdhKR1fuobyOHvvvbe74YYb3EEHHRRmhl533XXu448/DouVwp///OfwOH8H4XjFFVeENRHnzJmz1WXHLhZYCMmURgxOmDAhTG555JFHEr6WePAZJM3ggrasZyMVWLw899xzbtWqVWGfpRh3tsAzxXPHc8iC0TAMo7rlgSwhLkMEdYAHHngAMRvzFclnn30W7LnnnkGjRo2Cbt26BTfccMPPPuvxxx8P+vXrFxQWFgaDBw8Opk2bVuV4ZWVlcMUVVwSdOnUKP2e//fYL5s6dW+U9q1evDo4//vigefPmQcuWLYMJEyYERUVFSV+LxpIlS8TvbC972cte9rKXvf77Wr9+fVJzrJE4dcKi2FCtQcRkprpKwmWOG9Uskolh7ZUc1l7JY22WHNZeydOQ28wsipnDtiDIUojBJMasujBYNLQBozpYeyWHtVfyWJslh7VX8libGa6h11E0DMMwDMMwMo8JRcMwDMMwDCMmJhTrKdRknDRpktVmTBBrr+Sw9koea7PksPZKHmszIxNYMothGIZhGIYRE7MoGoZhGIZhGDExoWgYhmEYhmHExISiYRiGYRiGERMTioZhGIZhGEZMTCjWE9asWeNOPPHEsMgqe0SfeuqpbuPGjer7zz333HBP6iZNmriePXu63/72t+Ee0/WVyZMnu969e4d7du++++7u/fffV9//xBNPuAEDBoTvHzJkiHv++eddQyKZ9rrvvvvcqFGjXJs2bcLXmDFj4rZvfSTZPuZh33l2lTjssMNcQyLZ9lq3bp2bOHGi69KlS5jZ269fP3su47TZbbfdtnWcZ9eW8847z23ZsqXGrteoBySx3Z+Rxey///7B0KFDg3fffTd44403gm233Tbcj1pi9uzZwRFHHBE899xzwbx584IZM2YE2223XXDkkUcG9ZEpU6aE+3vff//9wZdffhmcfvrpQevWrYMVK1bEfP9bb70V5OXlBTfeeGMwZ86c4PLLLw8KCgrCdmsIJNteJ5xwQjB58uTgk08+Cb766qvglFNOCVq1ahV8//33QUMh2TbzLFy4MNwPftSoUcGhhx4aNBSSba+SkpJgl112CQ488MDgzTffDNvt1VdfDT799NOgoZBsmz388MNBo0aNwp+014svvhh06dIlOO+882r82o26iwnFegBCBs3/wQcfbP3dCy+8EOTk5ARLly5N+HMef/zxcBAqKysL6hu77bZbMHHixK3/rqioCLp27Rpcf/31Md9/zDHHBAcddFCV3+2+++7BmWeeGTQEkm2vaMrLy4MWLVoEDz30UNBQSKXNaKcRI0YEf/vb34KTTz65QQnFZNvr7rvvDvr06ROUlpYGDZVk24z37rvvvlV+d/755wcjR47M+LUa9QdzPdcD3nnnndDdvMsuu2z9Ha4/9ot+7733Ev4c3M64rvPz69cW4KWlpe6jjz4K28RD2/Bv2i4W/D7y/TBu3Djx/Q29vaLZtGmTKysrc23btnUNgVTb7Oqrr3YdO3YMQ0UaEqm013PPPeeGDx8eup47derktt9+e3fddde5iooK1xBIpc1GjBgRnuPd0wsWLAhd9QceeGCNXbdR96lfiqCBsnz58nCyiQSxxyTNsURYtWqVu+aaa9wZZ5zh6ht8NyYTJpdI+PfXX38d8xzaLdb7E23PhtZe0Vx00UWua9euPxPb9ZVU2uzNN990f//7392nn37qGhqptBciZ+bMmWEsNmJn3rx57uyzzw4XJOxGUt9Jpc1OOOGE8Lw999wT76ErLy93v/nNb9yll15aQ1dt1AfMopjFXHzxxWGAu/ZKdOLW2LBhgzvooIPcoEGD3FVXXZWWazcaLjfccEOYnPH000+HAffGzykqKnLjx48Pk4Dat29f25dTJ6isrAwXxPfee6/beeed3bHHHusuu+wyd88999T2pWUtr776amh1veuuu9zHH3/snnrqKTdt2rTQKGAYiWIWxSzmggsucKeccor6nj59+rjOnTu7lStXVvk9K0cymzkWb8Laf//9XYsWLcKJvaCgwNU3mIjz8vLcihUrqvyef0vtw++TeX9Dby/PzTffHArFV155xe2www6uoZBsm82fP98tWrTIHXLIIVWEkPcGzJ071/Xt29fVV1LpY2Q6Mz5xnmfgwIGhlR+3bGFhoavPpNJmV1xxRbggOe2008J/U72huLg49BwhsnFdG0Y8rJdkMR06dAjLs2gvBkfidigbQSyKBxcNEw/lEzRL4tixY8PPIP6nvlp/+H5YIGbMmLH1d7QN/6btYsHvI98PL7/8svj+ht5ecOONN4aWiunTp1eJl20IJNtmPLuzZ88O3c7+9ctf/tKNHj06/H/KmNRnUuljI0eODN3NXlDDN998EwrI+i4SU20zYoWjxaAX2riiDSMhajubxkhfeZwdd9wxeO+998LSEZS6iSyPQ5mS/v37h8dh/fr1YRbvkCFDwvI4y5Yt2/oiE7M+lpWgTMSDDz4YZomfccYZYVmJ5cuXh8fHjx8fXHzxxVXK4+Tn5wc333xzWO5l0qRJDa48TjLtdcMNN4QZ808++WSVvlRUVBQ0FJJts2gaWtZzsu21ePHiMJP+nHPOCebOnRtMnTo16NixY/CnP/0paCgk22aMW7TZo48+GixYsCB46aWXgr59+4ZVHQwjUUwo1hNWr14dCsPmzZsHLVu2DCZMmFBlkqaGFuuCWbNmhf/mJ/+O9eK99ZE77rgj6NmzZyhoKDNBzUnP3nvvHU7U0eWC+vXrF75/8ODBwbRp04KGRDLt1atXr5h9iYmqIZFsH2vIQjGV9nr77bfDBS5iiVI51157bb1c2KarzSh1dtVVV4XisHHjxkGPHj2Cs88+O1i7dm0tXb1RF8nhP4nZHg3DMAzDMIyGhMUoGoZhGIZhGDExoWgYhmEYhmHExISiYRiGYRiGERMTioZhGIZhGEZMTCgahmEYhmEYMTGhaBiGYRiGYcTEhKJhGIZhGIYRExOKhmEYhmEYRkxMKBqGUa855ZRT3GGHHVZrf3/8+PHuuuuuS+i9xx13nLvlllsyfk2GYRiJYjuzGIZRZ8nJyVGPT5o0yZ133nlsVepat27taprPPvvM7bvvvu67775zzZs3j/v+L774wu21115u4cKFrlWrVjVyjYZhGBomFA3DqLMsX7586/8/9thj7sorr3Rz587d+jvEWSICLVOcdtppLj8/391zzz0Jn7PrrruGVtCJEydm9NoMwzASwVzPhmHUWTp37rz1hQUOC2Pk7xCJ0a7nffbZx5177rnud7/7nWvTpo3r1KmTu++++1xxcbGbMGGCa9Gihdt2223dCy+88DNr3wEHHBB+JufgUl61apV4bRUVFe7JJ590hxxySJXf33XXXW677bZzjRs3Dj/nqKOOqnKc90+ZMiVtbWQYhlEdTCgahtHgeOihh1z79u3d+++/H4rGs846yx199NFuxIgR7uOPP3Zjx44NheCmTZvC969bty50Ie+4447uww8/dNOnT3crVqxwxxxzjPg3Pv/8c7d+/Xq3yy67bP0d5/72t791V199dWj55HNwNUey2267hddVUlKSwRYwDMNIDBOKhmE0OIYOHeouv/zy0LJ3ySWXhNY9hOPpp58e/g4X9urVq0OxB3feeWcoEklKGTBgQPj/999/v5s1a5b75ptvYv4N4hLz8vJcx44dt/5u8eLFrlmzZu7ggw92vXr1Cj8H4RhJ165dXWlpaRW3umEYRm1hQtEwjAbHDjvssPX/EXPt2rVzQ4YM2fo7XMKwcuXKrUkpiEIf88gLwQjz58+P+Tc2b97sGjVqVCXh5he/+EUoEPv06RNaLB9++OGtVktPkyZNwp/RvzcMw6gNTCgahtHgKCgoqPJvxFzk77y4q6ysDH9u3LgxjB389NNPq7y+/fbbn7mOPVgoEXtYBz3EP+LafvTRR12XLl1CyyXWTVzbnjVr1oQ/O3TokOZvbRiGkTwmFA3DMOKw0047uS+//NL17t07THSJfOFKjsWwYcPCn3PmzKnye7Kgx4wZ42688cbQtb1o0SI3c+bMKkkz3bt3D4WmYRhGbWNC0TAMIw6UqsHSd/zxx7sPPvggdDe/+OKLYZY02c2xwCKIwHzzzTe3/m7q1Knu9ttvD62RxDD+4x//CK2W/fv33/qeN954I0ymMQzDyAZMKBqGYcSBBJO33norFIWIOOIZKa9DEe/c3Fy1jiJxiB7e/9RTT4UZ1AMHDgzrK+KGHjx4cHh8y5Yt7plnngmTagzDMLIBK7htGIaRIUhowVpIMfDhw4fHff/dd9/tnn76affSSy/VyPUZhmHEwyyKhmEYGYIMZtzLWmHuSEioueOOOzJ+XYZhGIliFkXDMAzDMAwjJmZRNAzDMAzDMGJiQtEwDMMwDMOIiQlFwzAMwzAMIyYmFA3DMAzDMIyYmFA0DMMwDMMwYmJC0TAMwzAMw4iJCUXDMAzDMAwjJiYUDcMwDMMwjJiYUDQMwzAMwzBcLP4PEw+RMOFqvE4AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "[
]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "epochs[0].plot_image(picks=[0], scalings=dict(eeg=1));" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 6. Decoding analysis\n", "\n", "Once you have simulated the data, you can validate your pipeline by running it on the simulated data to make sure that the effects you know to be present are detected. To illustrate it, we use the standard MNE decoding pipeline to decode the simulated effects in a time resolved fashion.\n", "\n", "### 6.1. Within subject analysis:\n", "We can try to decode each of the labels of interest (face vs. objects and attended vs. unattended) for a given subject and we will see that these effects are present at the expected time points:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5, 1.0, 'Sensor space decoding')" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAA7JxJREFUeJzsXQeYG9XVvdL21Xav1/a6rXvHBgPGBmx6BwOBAAmhhBZKQm9/KIEESIAQIBBaqCF0Aphmum3AmGJjY+Pey9rbe9+V/u++mTt6M5oqjdruO9+39paRNJJGM+ede+65nkAgEAABAQEBAQEBgT4Eb7x3QEBAQEBAQEAg1hAESEBAQEBAQKDPQRAgAQEBAQEBgT4HQYAEBAQEBAQE+hwEARIQEBAQEBDocxAESEBAQEBAQKDPQRAgAQEBAQEBgT4HQYAEBAQEBAQE+hwEARIQEBAQEBDocxAESEBAQCCKWLBgAXg8HvZ/suzfeeedB2VlZXHdLwGBaEMQIAGBOGLlypVw2mmnwfDhwyEzMxMGDx4MRx55JPzzn/+M964JCAgI9GqkxnsHBAT6KhYvXgyHHnooDBs2DC666CIYOHAg7NixA5YsWQIPPfQQ/P73v4/3Lgr0UTz11FPg9/vjvRsCAlGFIEACAnHCXXfdBfn5+fD9999DQUGB6m+VlZWQzGhpaQGfzxfv3RAIE2lpafHeBQGBqEOUwAQE4oRNmzbBpEmTQsgPoqSkJOR3L774IkyfPh2ysrKgqKgIzjzzTKYY8TjkkENg8uTJsHr1aqYuZWdns7LavffeG3J/WGbDx8dtCgsLYd9994WXXnpJtc2PP/4Ixx57LOTl5UFOTg4cfvjhTKHi8dxzzzEPycKFC+Gyyy5j+z5kyBDT52712H/605/Yfa5duxZ++ctfssfv168fXHnlldDe3q66r2effRYOO+ww9rgZGRkwceJEeOyxx3Qf98MPP4Q5c+ZAbm4uu8/99tsv5Dl/++23cMwxxzByivuH23/99ddgBzt37oSTTz6ZkT/cn6uvvho6Ojp0t7X7OLt27YILLrgASktL2fMbMWIEXHrppdDZ2alss3nzZjj99NPZcYH3dcABB8D7778f9v5pPUBbt25l78f9998PTz75JIwaNYrtC75+SOC1eP3119n7gGVdPB7feust4SsSSDgIBUhAIE5A388333wDq1atYhcJK7Xo1ltvZWTgwgsvhKqqKkYiZs+ezUgKT6Lq6urYhfXUU09l27/xxhtw4403wpQpUxiZoRLHH/7wB+Y/IlLx008/sYvyr371K7bNzz//DAcffDAjCjfccANTBZ544glGspDszJgxQ7WPSH769+8Pt912G1OAjGDnsQm4/3jRvOeeexjxevjhh9nze+GFF5RtkOwgmTrppJMgNTUV3n33XbYvWMK5/PLLVUTtt7/9Ldv25ptvZq8Zvnbz589XHvfzzz9nrxESzdtvvx28Xq9CsL788kvYf//9DZ9XW1sbI4jbt29nzw8Jy3/+8x92n1rYfZzy8nL2fX19PVx88cUwfvx4RojwPW1tbYX09HSoqKiAWbNmsZ/xcZEoPv/88+z1wO1OOeUUx/tnBCSLTU1NcMkllzBChMQajzMkYKQaIfE644wz2PGG7xu+X0jgkIgLCCQUAgICAnHBxx9/HEhJSWFfM2fODNxwww2Bjz76KNDZ2anabuvWrWybu+66S/X7lStXBlJTU1W/nzNnTgA/1i+88ILyu46OjsDAgQMDv/jFL5TfzZ07NzBp0iTT/Tv55JMD6enpgU2bNim/Ky8vD+Tm5gZmz56t/O7ZZ59lj3nQQQcFuru7LZ+3nce+/fbb2X2edNJJqt9fdtll7PcrVqxQftfa2hpy+6OPPjowcuRI5ef6+nq23zNmzAi0tbWptvX7/cr/Y8aMYbel39H9jxgxInDkkUea7vODDz7I9u21115TftfS0hIYPXo0+/0XX3zh+HHOOeecgNfrDXz//fchj0e3veqqq9j9f/nll8rfmpqa2H2VlZUFenp6HO0f4txzzw0MHz5c+XnLli1sm379+gVqa2uV37/zzjvs9++++67yuylTpgSGDBnC9oGwYMECth1/nwIC8YYogQkIxAnY7YUKEK7UV6xYwVbTRx99NFspz5s3T9nuf//7H1MzUA2prq5WvtA0PWbMGPjiiy9U94ulqrPPPlv5GVUCVBFwlU5A9QPLIXrlC0RPTw98/PHHrFwycuRI5feDBg1iaslXX30FjY2NqtugkTslJcXyeVs9Ng9ewUGQMfyDDz5QfoclQUJDQwN7bbCchM8Xf0Z88sknTLm46aabWFmGByoZiOXLl8OGDRvY86upqVFeZ1SzUDlZtGiRqTEY9wlfH1S2CFiOQuWGh93Hwa+3334bTjzxRFYi1IL2Gx8X39+DDjpIdQzg42LpCsuhTvbPDKjsYMmSgAohgo4tVKyws/Gcc85h+0DA9wMVIQGBRIIogQkIxBHooUCCg34OJEHolfjHP/7BLlJ4oUQfBV4sA4EAIzt2DKvov6GLIwEvWlhmImBJ7NNPP2UXztGjR8NRRx3FLsgHHngg+zuW2LCkMm7cuJDHmzBhArs4o/8Iy0kE9KbYgdVj89A+Z/SeYLkIL+wE9M1gGQnJJO4zDyRA6LFBvxXCrNSIrzPi3HPPNdwG748nADy2bdvGno/2tde+hnYfB48JJJlW5VF8XG05kt4n+jveh939MwN2LPKg1wLLXPRYCHwcLfB3y5Yts/1YAgLRhiBAAgIJAFRpkAzh19ixY+H8889nRlK8sCPZwIsWGnj1FBZ+pY0wUmGQRPEXx3Xr1sF7773HPDBvvvkm/Otf/2L+nTvuuCOs58ArMWaI5LG1F28kNqiaoDfmgQcegKFDh7LXEtUOJJJOWrlp2/vuuw+mTZumu432tQ4Hdh+ntrYWEg12ji0BgWSBIEACAgkGKnfs3r1bUT3wAoMKC5Ijt4CdQFjSwC9UG9DMimZrNAijmRnLI0hUtMDOLFRhkGxE47H5EhWqJbyytHHjRkYgqJsIDc/YxYQlQ16d0JYF8TVEoOFcT53gt0HT9xFHHBGWqR3vH98rnqhpX0O7j4PvAW6D92n1uEbvE/3dyf5FAnosfJ+00PudgEA8ITxAAgJxAl6k9VbO5G+h0gSSA1x5ozqi3R5/Rh+JU2hvg6oJltvw/rq6utjjYWnqnXfeUZWbsOMIO4HQb4IX53Bg9dg8Hn30UdXPlJBN3WykSPCvC5aPsKOKBz4XbH3HriRtGz3dFjuykJxgq3dzc3PIfmNZ0AzHHXcc88Bg5xUBS3LYNs7D7uMgyUQPFpK8H374IWQ72m983O+++46VAAnoJ8LHRaKIr62T/YsE2FmG5Tbs0uOfG3YNojdIQCCRIBQgAYE4AQ29eAHCNmUs4aASgunQr776KrtwYRkMgRfLv/zlL0wdQTKCF0W8mG/ZsoV5htDEet111zl6bCQEaKJG382AAQNgzZo18Mgjj8Dxxx/P7huBj4nmYSQ72FaOLebYBo+Ki16ukJuPTcDniCZxbOvHCzxmIaFfaOrUqcp9IYFCozC2ZuNFF9vsMeOGFDQEkjUsiWGEAJYZ8T7Qv4K+K3wPsG0cCce///1vRq7Q24SvPxrSse0cySreB5IRI6AJHJ8HGoCXLl3KDMfYZo5KGg8nj3P33XczMzqaiPF9xvIhPi8sj6IRHQ3laOx++eWX2f1heztmAeHzwdcOy4v4eE72L1LgPs+dO5e9v/jc0B+Ej4vESI/wCQjEDfFuQxMQ6Kv48MMPA7/97W8D48ePD+Tk5LCWc2xJ/v3vfx+oqKgI2f7NN99kreY+n4994e0uv/zywLp161Rt8Hot5tq25ieeeIK1smNbc0ZGRmDUqFGB66+/PtDQ0KC63bJly1i7Nu5fdnZ24NBDDw0sXrxYtQ21weu1auvBzmNTG/zq1asDp512GmthLywsDFxxxRUhbezz5s0L7LXXXoHMzEzW9v23v/0t8Mwzz7DbY/u2dttZs2YFsrKyAnl5eYH9998/8PLLL6u2+fHHHwOnnnqqsn/4uv3yl78MfPbZZ5bPbdu2bax1H1+r4uLiwJVXXhmYP39+SJu5k8fB+8R2+P79+7PtsL0f33eMNyBgVAG+TgUFBex1wOf13nvvhb1/Rm3w9913X8h94u/x/eLxyiuvsOMT93fy5MnsdccYBvydgECiwIP/xI9+CQgICIQCk6Cx5IfloOLi4njvjoALQMM3+ppQVRQQSAQID5CAgICAgGtAH1d3d7fqdwsWLGDlRkwRFxBIFAgPkICAgICAa0AvE3a3YRgnmqKxG+3xxx9nvq/f/e538d49AQEFggAJCAgICLgGNJdjpxsavbGEiZEHaHD/61//yuaUCQgkCoQHSEBAQEBAQKDPQXiABAQEBAQEBPocBAESEBAQEBAQ6HMQHiAdYNQ+JqZiKJt29pCAgICAgIBAYgJdPU1NTcyATyGgRhAESAdIfiKZcyQgICAgICAQP+zYsQOGDBliuo0gQDqgOH58AcOddyQQOXCeEbJ4IqXYTSIgICAgIGCExsZGJmBox+roQRAgHVDZC8mPIEDxAw26ROD7IAiQgICAgIAd2LGvCBO0gICAgICAQJ+DIEACAgICAgICfQ6CAAkICAgICAj0OQgPkICAgIBAn4w76ezsjPduCDhEWlqayh8aCQQBEhAQEBDoU0Dis2XLFkaCBJIPBQUFbLhupDl9ggAJCAgICPSpoLzdu3czFQHbpa3C8gQS671rbW2FyspK9vOgQYMiuj9BgAQEBAQE+gy6u7vZRRQzxrKzs+O9OwIOkZWVxf5HElRSUhJROUxQXwEBAQGBPoOenh72f3p6erx3RSBMEHHt6uqCSCAIkICAgIBAn4OY85i8cOu9EwRIQEBAQEBAoM9BECABAQEBAQGBPgdBgAQEBAQEBHo5/vSnP8G0adPivRsJBUGABAQEehc6W7FfNt57ISAgYIJIDcxuQBAgAQGB3oO6bQD3jQJ49w/x3hMBAdeBwY333nsvjB49GjIyMmDYsGFw1113sb/deOONMHbsWNYhNXLkSLj11lsVkvHcc8/BHXfcAStWrGAGYvx67rnn2N/q6+vhwgsvhP79+0NeXh4cdthhbDsef/nLX1jLeW5uLtv2pptuUqlJuF933nknDBkyhO0X/m3+/PnK37du3coe89VXX4U5c+ZAZmYmPPnkk+zx3njjDdVjvf322+Dz+aCpqQmiDZEDJCAg0HuwezlAVyvA1q/jvScCSRSu19YltcbHGllpKY46mm6++WZ46qmn4B//+AccdNBBLNBx7dq17G9ITpDUYL7RypUr4aKLLmK/u+GGG+CMM86AVatWMVLy6aefsu3z8/PZ/6effjrL1vnwww/Z75544gk4/PDDYf369VBUVAT//e9/Gcn617/+BQceeCC88sor8Pe//x1GjBih7NdDDz3Efoe33XvvveGZZ56Bk046CX7++WcYM2aMsh0SJ9wOt0EShETr2WefhdNOO03Zhn7GfY82PAF89wVUaGxsZAdCQ0MDY6gC8UFLSwvk5OSw75ubm9mqQEDAFEufA3j3SoDMAoCbtsV7bwQSEO3t7WwMBl7A8SLc2tkNE2/7KC77svrOoyE73Z4OgYoIqjSPPPIIU2GscP/99zOy8sMPPygeIFRXli9frmzz1VdfwfHHH89CBVG5IaDChMTp4osvhgMOOAD23Xdf9rgEJF94Tqb7Gjx4MFx++eXwf//3f8o2+++/P+y3337w6KOPMgUIX+8HH3wQrrzySmWb7777DmbNmgU7duxgqc64H3hfSNJQKbL7HoZ7/RYlMAEBgd6Dtjrp//Z6gJ7ueO+NgIBrWLNmDXR0dDB1Rg9YXkKFBmdk4cLxlltuge3bt5ve54oVKxiR6devH7sNfSG52LRpE9tm3bp1jMzw4H9GwlFeXs4emwf+jPvMA4mU9n4mTZoEzz//PPv5xRdfhOHDh8Ps2bMhFhAlMAEBgd5HgOj7nP7x3BuBJACWoVCJiddjOx0BoYdvvvkGfv3rXzOfz9FHH80UECpVmaG5uZkpLwsWLNAdOOo29FR8VLNQJcLyGJa/zj///JiFVAoCJCAg0EsJUK0gQAKWwIut3TJUPIFeGiRBn332WUgJbPHixUw5+eMf/6j8bts2dQkYR3/QGBDCPvvsA3v27IHU1FQoKyvTfdxx48bB999/D+ecc47yO/yZgGUm9B19/fXXqrIV/qxVjvRw9tlns3Lbww8/DKtXr4Zzzz0XYoXEf9cFBAQEwiFArTXx3BMBAVeBXhfs9EKygGQGS0xVVVWK0RjLXaj6oO/m/fffh7feekt1eyQ4WNpC3w52a+Xm5sIRRxwBM2fOhJNPPpl1l2EXGZaz8PannHIKK1n9/ve/Z4Zq/B79Olhq++mnn1inGeH666+H22+/HUaNGsU6wFDJwcdBA7UVCgsL4dRTT2X3cdRRR7F9ixWEB0hAQKD3oK0++L0gQAK9DNjafu2118Jtt90GEyZMYN1daBzGjqurr74arrjiCkZAUBHCbXn84he/gGOOOQYOPfRQZqZ++eWXmfr1wQcfMM8Nlp6QAJ155plMPRowYAC7HZbWsPvsuuuuY4oRkqjzzjtPZT7+wx/+ANdccw3btylTprBus3nz5qk6wMxwwQUXQGdnJ/z2t7+FWEJ0gelAdIElBkQXmIBjPHYgQMUq6fsTHwKYfl6890ggwWDWQSRgD0ceeSQzW//nP/8BN4D3gwQO1SdUt6zgVheYKIEJCAj0HogSmICAq2htbYXHH3+cmatTUlKYcoRt6p988okr941ZRn/961/hkksusUV+3IQogQkICPRSAlQbzz0REOgV8HBlsunTp8O7774Lb775JvMPRQr0HY0fP56pSVhmizWEAiQgINA70NUupUAThAIkIBAxsrKylPRot4HhjPgVLwgFSEBAoHcAww95CAIkICBgAkGABAQEel/5CyEIkICAQKITIEyBxIwCdHPPmDGDzQcxwiGHHKJMs+W/cJ4JARvbsE0QEy5RvsNa5YYNG2L0bAQEBOICQYAEBASSiQBhqBLmB2CI0rJly2Dq1KnMbY7ZBnr43//+x1zj9IUTbtGZjhNteWMVpkqic/3bb79l7dN4n9g6JyAg0MsJUKY05VqYoAUEBBKaAD3wwAMsZRJDmCZOnMhIS3Z2NjzzzDO62xcVFTHHOH1hKx5uTwQI1R+cOIuD4ObOnQt77bUXvPDCCyxfACfhCggI9PIQxH5y+FpHI0B3Z1x3SUBAIHERVwKEyY9Lly5VtdN5vV72Mw53s4Onn36aJVdSSB6GI+FsE/4+MRQJS2t271NAQCCJFaDCMgCPNzgPTEBAQCDRCFB1dTUbzkaR2wT8GUmMFdArhCUwfjAc3c7JfXZ0dLD0SP5LQEAgSQlQdj+ArCLpe+EDEhCIKZ577rmoTJLvlSWwSIDqD84dsTNx1gz33HMPU4noa+jQoa7to4CAQIwJUFahRIIQggAJ9BFs3bqVNQThEFIeOLcLh51GA2VlZcxywgPnk61fvx6SAXElQMXFxczAXFFRofo9/oz+Hqs5UTj5Foeo8aDbOblPTKDEuSH0tWPHjjCfkYCAQGIQIKEACQjEA1lZWVBSUgLJgLgSIJz7gdHan332mfI7v9/Pfp45c6bpbV9//XVWujr77LNVv8fhaEh0+PvEkhZ2gxndZ0ZGBhuaxn8JCAj0BgVIeIAEeg9wyvpBBx3ESkz9+vWDE044ATZt2qRc+xB77703U4IwMgZTlp9//nl45513lMiYBQsWsO127NgBv/zlL9l9YXMRNg2hiqRVju6//34WKYOPd/nll0NXVxf7O94/To3HIaZ030YlsMceewxGjRrFrvnjxo0LGaKKt/33v/8Np5xyCmtqwinyOE2+15fAsAX+qaeeYm/SmjVr4NJLL2XqDnaFIc455xzdGSFY/sI3B98U7Qt51VVXwV/+8hf2Aq5cuZLdR2lpadRkQAEBgURVgAQBErBAIADQ2RKfL3xsB8BrI14zf/jhB7bIx6YhJA0oHFB+Ho6twIgYjIy57rrrGMk55phjlOiYWbNmMRJz9NFHQ25uLnz55Zfw9ddfQ05ODtsOm5MIX3zxBSNY+D9eo5Hc4BcC73/IkCFw5513Kveth7feeguuvPJKuPbaa5lnF4ee4vUd75PHHXfcwfb1p59+guOOOw5+/etfQ21tdD+/cZ8FhvXCqqoqFlyIJuVp06Yxlksm5u3bt7M3mce6devgq6++go8//lj3Pm+44QZ2oFx88cVQX1/PGDPeJwYtCggI9HYCVCA8QAL2gfPj7i6Nz2P/XzlAutTBbAe/+MUvVD9jXEz//v1h9erV7H8EigK83QNLUlgt4X/34osvMtKEqgspN88++yxTblAhOuqoo9jvCgsL4ZFHHmFWFRxaioHDSLwwugZVI/w9kigzywoqSKgmXXbZZexnJHBLlixhvz/00EOV7XCbs846i31/9913syw/JHVIynotAUJcccUV7EsPJNfxQAkN836MgG8oslL8EhAQ6GM5QMIELdBLgRMNUCxASwd2USOJIaEAc/TsYsWKFbBx40ZGXnhgWDCV1BCTJk1iJIeApTCsqjgBVnZQjOBx4IEHwkMPPaT6HWb2ETDWBq0oRoHIvYoACQgICESEnm6Ajgbpe0GABJwgLVtSYuL12A5w4oknwvDhw5ltBG0dSIAmT56sKlvZQXNzM/Pf/ve//w35GylJbPfS0kLEBSJdbiOWj0UQBEhAQCD50S6TH0SmKIEJOACWgByUoeKFmpoaZv9A8nPwwQez36EVhIAGYwRm6/HA32t/t88++7AxVNitFUnTj959azFhwgTmMTr33HOV3+HPThSrXmuCFhAQEHDN/5ORB5CSKrrABHod0I+D/p4nn3ySla8+//xz5qchIJlBvw/6XTH2BSNdKKsHjcVInrBshgZoNBgXFxezzi80QeMEBbSb/OEPf4CdO3fa3ie870WLFsGuXbvYfevh+uuvZ8Zp7ATDEh6OvyKDdrwhCJCAgEDvMkAjRA6QQC8DNgNh9h2Oj8KyF7af33fffcrfU1NTmXH4iSeeYOUxJDcINCyjb3bfffdl5S1UX7DVfNGiRTBs2DA49dRTmUqDmXroAXKiCKHPFlvnscWdL53xwO5r9Pug6Rk9Rbh/aLjGNvp4wxMwcxP3UWBuECZCI4MWmUDxA3byYWsm1axp3puAQAjWfwzw0ukAg6YCXLJIKon9dZj0tz/uAUjLivceCiQI8CKPigfm5ojO4N73Hjq5fgsFSEBAoHdlAFEpzCtbHEUZTEBAQAeCAAkICPQ+AoTGVmGEFhAQMIEgQAICAr2PACEEARIQEDCBIEACAgLJD0GABAQEHEIQIAEBgV5KgMQ8MAEBAWMIAiQgIJD8EAqQgICAQwgCJCAgkPxo5+aAEbJEFpCAgIAxBAESEBBIfggFSEBAwCEEARIQEOjdBKhNeIAEBARCIQiQgIBAcgMnRgsFSKAPA8dR4PT05cuXx3tXkgqCAAkICCQ3OpsAAv7gJHiC6AITEBAwgSBAAgICyQ1Sf9KyAdIy9RUgMfJQQEBAA0GABAQEkht65S+eAHW3A3S1xn6/BARcht/vh3vvvRdGjx4NGRkZbJr7XXfdpfx98+bNcOihh7Jp71OnToVvvvlG+VtNTQ2cddZZMHjwYPb3KVOmwMsvv6y6f5zQ/oc//AFuuOEGKCoqgoEDB8Kf/vQn1Tb19fVwySWXwIABA9ggUpxM/9577yl//+qrr+Dggw+GrKwsGDp0KLs/HGydiBAESEBAoHcSoHQfQEqG9L3wAQlYAC/SRl84fdzutm1tbba2DQc333wz/PWvf4Vbb70VVq9eDS+99BIjIoQ//vGPcN111zEv0NixYxnh6e7uZn/D5zB9+nR4//33YdWqVXDxxRfDb37zG/juu+9Uj/H888+Dz+eDb7/9lpGtO++8Ez755BOFgB177LHw9ddfw4svvsj2AfcnJSWF/X3Tpk1wzDHHwC9+8Qv46aef4NVXX2WE6IorroCEREAgBA0NDaiXs/8F4ofm5mb2PuAXfi8goIuVbwQCt+cFAs8eH/q3+8dLf9u1LB57JpCAaGtrC6xevZr9z4PONXpfxx13nGrb7Oxsw23nzJmj2ra4uFh3O6dobGwMZGRkBJ566qmQv23ZsoXd57///W/ldz///DP73Zo1awzv8/jjjw9ce+21ys+47wcddJBqm/322y9w4403su8/+uijgNfrDaxbt073/i644ILAxRdfrPrdl19+yW6jfb2j8R46vX6nxpuACQgICLiiAGXmh/4Ny2BN5UIBEkh6rFmzBjo6OuDwww833GavvfZSvh80aBD7v7KyEsaPHw89PT1w9913w2uvvQa7du2Czs5Odn9YDjO6D7ofvA8EKktDhgxh6pIeVqxYwZSf//73v8rvkFuicrRlyxaYMGECJBIEARIQEOidJTCE6AQTsInm5mbDv1GJh0CEQA9erzekRd0NoKfGCmlpacr32BaPQPKBuO++++Chhx6CBx98kPl/fD4fXHXVVYwIGd0H3Q/dh9U+4GuI/iD0/WiBfqVEgyBAAgICyY02nTEYBJEFJGATSAjiva0ZxowZwwjIZ599BhdeeKHj26NvZ+7cuXD22Wezn/1+P6xfvx4mTpxo+z5QHdq5cye7nZ4KtM8++zBfEJq0kwHCBC0gINCLFSBBgAR6B7Dj6sYbb2QdWi+88AIzHC9ZsgSefvpp2wQKzcyLFy9m5bRLLrkEKioqHO3DnDlzYPbs2czkjPeFZa0PP/wQ5s+fz/6O+4f3j6ZnLJdt2LAB3nnnnYQ1QQsFSEBAILkhCJBAHwF2f6WmpsJtt90G5eXlzJ/zu9/9ztZtb7nlFtYmf/TRRzPfz8UXXwwnn3wyNDQ0ONqHN998k3WaYYcZdrOh2oOdYKQQLVy4kHWjYSs8+n9GjRoFZ5xxBiQiPOiEjvdOJBoaGxshPz+fHRh5eXnx3p0+C/xw5eTkKLVlt6RkgV6GZ44B2P4NwOnPA0w6Wf23b58E+PB6gIlzAX75Qrz2UCCBgO3gqFyMGDGCqSoCves9dHL9FiUwAQGB5IYwQQsICIQBQYAEBASSG6IEJiAgEAYEARIQEEheYAXflgIkCJCAgIAaggAJCAgkL3DGV0+nPQVI2B0FBAQ4CAIkICCQvCD1x5smzf7SIktWgPzdAB1Nsd03gYSG6P9JXrj13gkCJCAg0DtCEOXkWxXSswHS5Kh/UQYT4FKdtQnIAsmD1tZW3dRqpxA5QAICAskLM/8PXwZraJU6wYpGxGzXBBITmKODOThVVVXsAqodXSGQ2MoPkh8cRVJQUBAyosQpBAESEBDo5QSoCKBhh1CABJTZVhggiDky27Zti/fuCIQBJD8DBw6ESCEIkICAQO9XgBCCAAnISE9PZ6MhRBks+YCqXaTKD0EQIAEBgeSFIEACYQJLXyIJum8j7sXPRx99FMrKytiBOGPGDPjuu+9Mt6+vr4fLL7+cSZgZGRlsIu0HH3yg/P1Pf/oTkzj5r/Hjx8fgmQgICMQcggAJCAgkowL06quvwjXXXAOPP/44Iz8PPvggG9S2bt06KCkpCdke5cojjzyS/e2NN96AwYMHsxou1gN5TJo0CT799FOV6U1AQKAXQhAgAQGBMBFXZvDAAw/ARRddBOeffz77GYnQ+++/D8888wzcdNNNIdvj72tra2Hx4sVK+xuqR1og4XHDICUgIJAsBEi9CFJBpEELCAgkUgkM1ZylS5fCEUccEdwZr5f9/M033+jeZt68eTBz5kxWAhswYABMnjwZ7r77bujp6VFtt2HDBigtLYWRI0fCr3/9a9i+fXvUn4+AQCSobemE3Q1t8d6NXq4AiYGoAgICCaAAVVdXM+KCRIYH/rx27Vrd22zevBk+//xzRmrQ97Nx40a47LLLoKurC26//Xa2DZbSnnvuORg3bhzs3r0b7rjjDjj44INh1apVkJubq3u/HR0d7IvQ2Njo6nMVEDCD3x+A0x9fDJVNHfDlDYdCQXZ6vHcpOYMQjSBKYAICAjpIKnOM3+9n/p8nn3yStcFNnz4ddu3aBffdd59CgI499lhl+7322osRouHDh8Nrr70GF1xwge793nPPPYwoCQjEAz+XN8Kmqhb2/do9TXDASPmCLWAN4QESEBBIthJYcXExIzEVFRWq3+PPRv4d7PzCri8+A2DChAmwZ88ewzwHNEjjbVAtMsLNN98MDQ0NyteOHTvCfl4CAk6xaEOV8v22GokICbjpAZIJUFstrqJis18CAgIJD288g6hQwfnss89UCg/+jD4fPRx44IGMyOB2hPXr1zNihPenh+bmZti0aRPbxgjYTp+Xl6f6EhCIFRauCxKgrTXSjBsBG+juAOhqsVaAaCBqwA/QLpfMBAQE+jzimgOELfBPPfUUPP/887BmzRq49NJLoaWlRekKO+ecc5g6Q8C/YxfYlVdeyYgPdoyhCRpN0YTrrrsOFi5cCFu3bmXdYqeccgpTjM4666y4PEcBATM0tnfB0u2yiiEUoPD8P+AByMg33i41HSBDXtQII7SAgEAieIDOOOMMNpDutttuY2WsadOmwfz58xVjNHZv8YPqhg4dCh999BFcffXVzN+DOUBIhm688UZlm507dzKyU1NTA/3794eDDjoIlixZwr4XEEg0LN5YDT3+gPLz1mqhAIVV/rIaaIkKUUej7AMaHZPdExAQSGzE3QR9xRVXsC89LFiwIOR3WB5DQmOEV155xdX9ExCIJhaul8pfB48phi83VDMFCCceY4K5gAsGaN4HVL9N8gEJCAgIxLsEJiDQl4FEZ9H6avb92QcMB+Q8LZ09UN0sBjRGhQAhRCeYgICADEGABATihE1VzbCrvg3SU70we0x/KM3PYr/fXit8QLYgCJCAgEAEEARIQCBOWCB3f80YUQRZ6SlQVpzNfhY+IJsQBEhAQCACCAIkIBBn/8+csZJBf3g/H/tfdIJFgwCJeWACAgJqCAIkIBAHtHX2wLdbalUEqKyfrACJLCB7oEwfRwqQMEELCAhIEARIQCAO+HZLDXR2+6E0PxNGl+Sw3wkFyCFECUxAQCACCAIkIBDP8te4/krLe5lMgIQCZBOCAAkICEQAQYAEBOJIgLD7izCsSCqBNbR1QX2raIW3hCBAAgICEUAQIAGBGGNHbStsrmqBFK8HZo0uVn6PnWAD8jLY90IFihIBwvEZPd3R3S8BAYGkgCBAAgJxUn/2GVYA+Vlpqr8JH1CUCJCyTUAMRBUQEGAQBEhAIMZYpGl/56F0goksIHP4ewDaG+wToJRUgMwC6XtRBhMQEBAESEAgtsDOr8WbpAvwnLElIX8XCpBNEPlBELGxgvABCQgIcBAESEAghli2vQ6aO7qhny8dJpXmhfydOsG21QoFyFb5KyNPUnfsQBAgAQEBDoIACQjEafq71xs68X24XAITCpBd/49N9QchCJCAgAAHQYAEBGKIheuC+T96IAKEE+Gb2rtium+91gBNEARIQECAgyBAAgIxQmVTO6ze3ci+P5jL/+GRm5kGxTnp7PttohXeZQIkbyvGYQgICAgCJCAQO3y5vpr9P3lwHhTnSHk/eggaoQUBio4CFF0C1OMPwF/eWw0frNwd1ccREBCIDIIACQjEafq7EYbLidBbhQ/ImgDZ7QCLYQnsuy218O+vtsBd76+J6uMICAhEBkGABARiAFQFvtxQZdj+zkO0wie3B2hjVbNS8gwEAlF9LAEBgfAhCJCAQAywclcD1LV2QW5GKuw9zFy1KCsmBUiUwJKRAG2qlAhQV0+AzXUTEBBITAgCJCAQw+6vA0cXQ1qK+cdOKEDJ7QHaJCtAiKqmjqg+loCAQPgQBEhAIAZYJJe/Zlv4f/hxGBWNHdDaKQZ3uk6AOhoAeqKnzOCgW4IgQAICiQtBgASihtqWTrjw+R/g45/3QF9GXUsn/LhdumDPHhuc/m6Egux0ZUjqdpEI7R4ByswH8HijqgIhYd1V36b8XNUsCJCAQKJCECCBqGHh+kr4dE0FPP3VFujL+PN7q8EfAJgwKA+GFErqjl0VSLTCu0iAvCnB7aPkA+LVH4RQgAQEEheCAAlEDY1tUvmmsb3vlnHe+6kc/vfjLsCpF385eZLt2wkfkAmws6qt3jkBioERenO1IEACAskCQYAEogYc+olo7KOdMLsb2uCPb61i319+6GiYPrzI9m1JARKdYDroaAII9DifBRYDAkQdYARBgAQEEheCAAlEnwD1wZlWfn8Arnt9BWuD3mtIPvzh8DGObi8UIBvlr9QsgLSsxCJAcgfY+IG57H/hARIQSFwIAiQQNTTLpS8kQkgI+hKeXbwVvt5YA5lpXvjHGdMsW9+NhqJurRYKkCv+H0J2UVRN0JtkD9ABIyWiJRQgAYHEhSBAAlFXgNCy0dyH2rnX7WmCv81fy77/4/ETYVT/HMf3QQpQeUMbdHTL5R4BFwhQ9BQgJPmbZQXogJES0RIESEAgcSEIkEDU0MSZn/nvezOQrFz5yo/Q2e2HQ8f1h7NnDAvrfnAivC89hZHHHbXBtmqBxCVA2P7e0e2HtBQP7DNM2rfa1k7o6vG7/lgCAgKRQxAggaihuSPo/ekrRugHPl4Pa/c0QZEvHf522l7g8XjCuh+8nfABWREghwboKBMg8v+U9fNBcU4GpHg9jMBiHpaAgEDiQRAggaihpaOnTxGgbzbVwJNfbmbf//XUKVCSmxnR/YmZYFFQgLKKokiAJKKKJU+v18NUPIQogwkIJCYEARKIugeoL5TAsNvr2teWsxX/mfsNhaMmDYz4PoUCFM0SWG3UFKBRJdL71j83g/0vCJCAQGJCEKBwgVc6AVPwpKe3t8Lf9s4qKG9oZ91bt54w0ZX7jEsadDIc1+GGIPJdYG3uEyAyQJPpvX+OIEACAokMQYDCwZcPAPx9HEBt3x7x4MQD1JsVoC/WVcI7y8uZ5wNb3n0Zqa7cb8wVoHevAnh4b4D2Ruj1ClBnM0BnS9RKYAj0ASFEFpCAQGJCEKBwsO4DgOYKgO1L4r0nCYvuHj+0d/n7hAfox23SBXnutFKl+8cNoJkWsbOuLTadRGvfA6jbAlD+I/RaAoQDUfOHSt+vfN3VEigpPSP7ixKYgEAyQBCgcNDRrD4RC5gaoHt7CaxZfq6Rmp61KMnNYEGK3f4AlHMTxqMGUkSadkOvJUDYlTfzcun7rx8C8Pe4Wv4akJcBuZlp7HtBgAQEEhtxJ0CPPvoolJWVQWZmJsyYMQO+++470+3r6+vh8ssvh0GDBkFGRgaMHTsWPvjgg4ju0zFQPkcIAmSIJq781dtLYK1yyGNORoqr94udRMOKYtQJhkSgS36Mxl3QawkQYp9zpNvWbgZYM8/V8tfI4mDopUKARAlMQCAhEVcC9Oqrr8I111wDt99+OyxbtgymTp0KRx99NFRWVupu39nZCUceeSRs3boV3njjDVi3bh089dRTMHjw4LDvMyx0yB4JQYBsdYD1dgWopVNSEbLT3fH+xMUHRKQe0VgOiT0JPkIClO4D2P8S6fuv/uGK8VvbAcaboKuFAiQgkJCIKwF64IEH4KKLLoLzzz8fJk6cCI8//jhkZ2fDM888o7s9/r62thbefvttOPDAA5nKM2fOHEZywr1Px8CTpSiB2Z4D1hcUoBaZ7PlcVoBUU+GjPROMjmlEYwKXwLraAHo6wg9CJOx/MUBaNsDuFQCbF7g2BZ4feyJKYNYIBALQJi8gDNEpcrAEehkBQjVn6dKlcMQRRwR3xutlP3/zzTe6t5k3bx7MnDmTlcAGDBgAkydPhrvvvht6enrCvk9ER0cHNDY2qr4M0d0OEJA/sIIAGaJJqwD1YhN0kAD1FgUogUtg9JnzpgKkO5+xpsDXTyqFkQrklgKkQ4Dws2B5ke+juOGNn2CfP3/Cxojo4qfXAO4ZDLDyjVjvmkAfQNwIUHV1NSMuSGR44M979uzRvc3mzZtZ6Qtvh76fW2+9Ff7+97/DX/7yl7DvE3HPPfdAfn6+8jV0qNwlooeOpuD3ggBZkoJUrzQKorEXK0Ct8sXNF4USGHWCbY02AepIkhIYX/4Kc8yIAjRDI5HashBg17Kw7wY79CiraVRJkADlZKQyEzuiWviAdPH91lpo6+qBn3c16G+wbTFAwC/9LyDQ20zQTuD3+6GkpASefPJJmD59Opxxxhnwxz/+kZW5IsHNN98MDQ0NyteOHTuMNxYEyFEJbGC+1BnV1Js9QDLZy053vwSGwYoIHIja4w/ERgFqqQLoTtD5VZH6f3gUDAOYfJr0/dcPhn03O2pbWadeVloKDMrLVM1zIxWoUpTBDOMD9DyDCiiwsrU6hnsl0FcQNwJUXFwMKSkpUFFRofo9/jxwoP4YAez8wq4vvB1hwoQJTN3B8lc494nAbrK8vDzVl60LhSBAhqATWml+Fvu/sa33KkAtndErgZUWZLHp4p09ftjdEMVWeP64hgBAs7Fi2msIEOLAK6X/V88DqN4YWQdYfx/r3OMh0qDN/T+kDBt6BGlkSYv7s9sEBOJGgNLT05mK89lnn6kUHvwZfT56QOPzxo0b2XaE9evXM2KE9xfOfToGrwC1N7iWI9LbQCe0QQXSihgv4O1dPb068ygaBAjTpYfKrfDbo9kKz5fAEtkI3R7BGAw9DJgIMPZYifQtfsg1/w9BtMKbl45J1TRUiInwCgVIoLeVwLBdHdvYn3/+eVizZg1ceuml0NLSwjq4EOeccw4rTxHw79gFduWVVzLi8/777zMTNJqi7d6nuxeKgESCBAwVoAF5mYpVQ7cVHld4iT56wWIVG1SA3C+BqX1AUSRAnRyxT2QjtNsKEOKgq6T/V7wSFvHT6wAjiE4wY/DnA2sFSBAgAffh/pLVAdDDU1VVBbfddhsrY02bNg3mz5+vmJi3b9/OurgIaE7+6KOP4Oqrr4a99tqL5f8gGbrxxhtt36e7pQL5hEwDFgVCfDF5mamQm5HKpG4sg5XkaoZaPjoDICMX4IofsGUPkg047oNiZHxRMEHzPqCodoKFKEAJaoSmC2JmBC3wWgw7AGDYTIDt3wAs+RfAUX8OSwGiERg8+udICqggQMb+H9MmCcUDVCOp7d7oLDIE+ibiSoAQV1xxBfvSw4IFofkcWMpasmRJ2PfpagmMn0wtoNsGj50weVlp7AQXInNjCm9LpfSFM6j6jYJkA2/eRBNsNDBcSYOOIgHSEvtEHYeBBm1ETom793vQ1QAvfQPww7MAB19rO2MIFUDtEFQeQgEyBu8L1C2BYf4Pxo4wyAGYvuLY7aBAr0fyLbnjjRACJIzQZl1g6Iuh2Ughqzx+GGXlakjmMRi+9JQQA6xbGF5MWUDRLIHJ5ArDARO5BEbELNe4qSEsjDkKoGSiVAr84WnbN6tp6WRKBpZ5R8jvEw/hATIGnw2mWwIj9YcgymACLkMQIDdKYAKGykhuZiorg4Ws8pr2AGz5Mvhz5RpIZgN0dhQM0HpZQKg4RJXY9xud2CUwPG6iQYCQwRwoe4GWPCYlTjvw/wwuyIIsnRiE4px09r8Yh2FeAtNVgKjcqfwsCJCAuxAEKFKvhCBApgpQTkZaUAHiW+FX/U+StQkVP0MyQjFARyEDiIAXV+wGQ79R1PJkiNgXj03sLjAiQDkuEyDE5FMB8odJZbbl/7V1E7Pyl7YEFjXy2ltN0Npzq1CABFyGIEDhDkLtDQQISUfDrqgqQDmoAGWlhnaBUflr7DFJXQKL5hgMQnqql5EgxNbqlugS+/7jpP+byjFDAhIK3R3BsojbChAiJQ1gluwd/PphgB7r7KrNJi3wiGI5BwhjIHpzFlbkHiAbJTChAAm4DEGAwl0pk1eCckmSDfU7AJ6YA/DCSdElQGiClhUgReau2QRQvgzAkwJw6B+Dv+siw2MSZgBFqQNM2wkWNSM0HddFIwE8XgB/d+JdcEj9Sclwtw2ex96/AcjuB1C/DWDLgrCmwPPITEtRSsBVzcl3fCdUCUyEIQq4DEGAwl0p5w9NbgVow0cA/i6A2i3ShHsXgVK/mgClqld8q96U/h85B2DgFOlihgNmq9dBsiHaGUCE0fKMqXV7NCVYtwkQtpfnDEhMI3SznPCeOyDyOWBGSM8GGLyvbR+UVQkMIcZh6INXhFu4UEQFQgESiDIEAQr3QoFzhJKZAG2U07KReFAHkEtArwqdzKQSGHWBdUlkCyc8I6acLl3IsPsGUZF8ZbBWmgMWxRIYYvxAKUBpfYWmC9FtYp+RA5BXmphGaKUDbFB0HydTHoVjEXKKyeY76lptE6Dq5gSdr5YAXWC8b1BBq3xuTc1URyAICLgEQYDC7ZYpSGIFCAddbl5o7GuKEE0d0okNuU12WgrrBGO/xxPcnp8AajZIZYzxJ0g3IAJUmXxGaFy5RtsEjRg3ULoor93TFF1in54TJBgJR4Ci1AGmRWa+9L9FQrnUlSeFfVK3lx7654owRKsSmG5SPClA/cZI/wsTtIDLEAQoXAKUzCWwHUsAujjVx+VxHkoHWHoqy8YhDxBb8a18Q9po3DHBlTbOY0rSVvhYmKARYwfkMEJZ3dwBNdHIlFEpQIMTmwBFowOMR4Y9BWhTJQ1BxffGuCQnBqLqQ5sLFmKEJg9Q/7HBNGgBARchCFBfLIFt/FT9s8uzuMgYjOUvBJXAmts6g/4fLH8RSiYlbwlMUYCiS4Cy01NhmJwIvc5tFQi7nbrl3Jv0XIA8oQDZUUbNhqDyEGnQ9kpgTUYKEEUzCAVIwGUIAhR2CYwjQMmW77Hxc/XPLitAVAJDAzSCSmAj2n6SjLW4wh59ZPAGJRPkG5YnHaEks3d2lE3QiLEDcqNTBuPDPdN9QQUI348+6QHKt6cAWXSAEUQatDkBwlmBpgoQhXOyeWAJFs0gkNQQBMipd6anU10Cw3ZhbTp0IgMD7ipWokMnqLxEqQRGZSEqgc3pXCRtMOEkgDTZ2IjAUhgG0CWhCkSjMIjsxcII7boCRCZ4bypAakbimqD5LrAEMEELBSh8YJMEzQscXJilWjgpoMVQ8Zhgw0ayxo4IJCQEAXICnuj4+ge7E5JJtdgkqz+lewP0Gyl939EQtTEYVAJLg244Gr6RNphyWuiNFB9QchGgZhqFEeUSGGKcTIDWut0Jxhug0cuimKB3J5a6GXMFqNE06mGzjRZ4hPAAhYLv+KKQT5UChEoPkR30fJEvS/iABFyEIEBOQJ6A1CyAlNRgGFsyESDy/4w+HCDDntTvFHwGEBGhg7wrodDTDH4kjiNmh95IaYX/OSnb4HNiUAIjBWhDRRP4tZkprhigpftXFCA0yrt8bESWAi1/ziinKFqw8bnY09jO/F+pXo8SUmmlANW2dIRm3fTxDrDMNC8U+dJDCRCSn4Bc7sLzLIZTIoQPSMBFCAIUbqcMItkIkL8nqACNPsJ2u2+kBCgtxQunpi5m37eMPgnAq0MWSpJTAaI2+FgoQDgUFcdi4IV3Z529YZ22gBPQSQFCpGUFj+1EKYPFIgU6xATdYNkBNqxfNju+zYAXeK8HALlPTYtQgfiW9/wsblYgb4Kmcyqa8lPTAXzF0s8iC0jARQgCFG6pIBkJUPmP0soKV7iYdmvT7GkInCOGM5Po4qRtg5dLYOgxOdy7lH1bWWYweoNvhU+ksovtNvjoK0CpKV4YLZdb1u5pjB6xRySaEZrvAItWCjSBXxgYmG7t+n8QOMi2nyiD6Rqg0R+oygnTGqCz5XMsKsfs90IBEnAPggBFUipINgJE5a9Rh0glPJtmT0N8+XeAT24FeGwWwNoPDBUgWPchZEM7bPOXQEWubLzWAsPO0ISLZcaGnZBsJuho5wBF1QitEHuumynRjNDNMWqBR9DnAgJBdSwCAoQQPiD9Ehj6A3UJELXAZxVJ/yslMOEBEnAPggCF4wFSCFBBchIgLH85yDuxXJWjMfGVswDeuxqgszWoABEpkMMP3/HPgibZNBwClLkp7yOJymCxGoYaVSO0VtlE8EbovpQBhMDmhpR00/JwkACZt8ATikUnmGEJjLpEm/kSmKIAyQSISmBCARJwEYIA9ZUSGJ5QdkllKBh1uKPEW0NQl8aQ/aX/f3gG4Mk5UNC4JlgCw8eVidc7PQeGhJ8lsxEaDa1tXeQBin4JDDE2GgqQVtlEKGnQu/pWBxgCS2wWnw0+BdqRAiSygFSDkXGMiD0FiDxAggAJuAdBgCLxSuDk7GQhQJu/kLoq+k8AyJcvbpGaoNtkAnTITQC/eVtqV61eD/+36wq4KOU9yEn3AqyZx6bO78wYBZsCg0PDzpK4FZ7KX/EogW2pboGObgM1zQ0FKNHSoJsqYtMBRjBRR7HEi11gThQgkQVkVgJLM/EACQVIIHoQBCicFOgQD1B98qQ/Y/s7IVITNClAWAocdSjApYsBxh0PqdANf0x7CQ5echHA0ufZJiuLjtIfeMgjyUZiUPkLTa4ZqbH5KA3My2SrZlSfNlY2R9EEXapWXvqSAmTx2dgsl79wAGpBtvEQVB6CAJl1gZECpNMFRudYRQESHiAB9yAIUCTtwslSAsOuKq3/BxGpCZqeNylhvn4AZ/4X/p5xGbQF0qGo4huA8mXsT1sGHKOSvnVBIzGq1wP0mBClBEELGaDTU0yHYboJfJzx8mT49W75gLTHdUKWwGLoAbL4bJD/x275CyEIkMMuMG0JDM8tCKEACbgIQYD6QhcYemqwiyYtG2DYzNBVLg7CxDEfToDbd7VK3/O5LB4PvOI/HE7ovAvaiidLv8Pgw4Ih+gMPeeB8Ncz98HcBVG+AREcrGaBjVP4KMUK75QOiURh6Jmg8trtczBxKhi4wi/Lw9hrp9RjRz175CyE8QPqT4POy0AMkm6A7u4MBn9oSGO8BSqKYDIHEhiBArpTAEpwAkfpTdrB6BhcZPcPpBONn8tDFQgZ2gaHfp+qX7wOc+RLAac/qh51pgSoKqUBJ4ANSBqHGyACtJUCuGaH1SmD4nqb5EsMH1NUe/IzFigCZmKDr26TFQlGOvfIXQihA+h4gvgSGvAZJkL4CJBMgXBwlSjq5QNJDECBXusAS3AOkV/5CYCIzKi4IpycVes4YqsglO/OdUTm+bIDxx7OTF/pWEKYm6CQzQsdyEGpUs4D0TNBIRhMlC6iZS4Gmcmu0YZIG3dAqXbwLsiRS74QA4fHfLn8++jL4ElhmWgqky2nayvmhtU4dhIjp5HR8inlgAi5BECA3RmFgCSkRygRG+7x9SagBOlIjtGKAztdVRbTpyHl2FKAkM0LHcgyGXiv87oZ25WLsugLEd4LF2whNHWCxSIEmENHSVYBkApRtnwDhAgDHmCCqRRlMOQ9gFxgixAitVYAQYh6YgMsQBCgcsyjJ41gK86Qktgq09UtJNi4sAyiSp7/zCNcITc9XsyInAoQruoxUjgBlpVqboFUKUOJnAcVyDAYPJJOl+VIpc50bRmjFBJ2reaAEMULHugPM4nNR3yqVwPKz0h2Z10UatH4JDKEyQmPJk/yF5AFCiFZ4AZchCFA4HiCSYnE1mug+IL78pbd6DjcNmm+BN5sDplGATE3QfBhi/fbg6x1l/GvBRvj7x+siIEAuKEBLHgeYf7Ntg2fQB9TongLEj8JQpUHHuwRGClCMMoAsTNDhKEAJ6QP68UWAd6+UhiTHEJhf1d7lV50XgllAXUH1B0fj8D5FEYYo4DIEAYq0VJDIBAgvphs+0ff/EDLcVoC6dH0xQRN0NwTMLvK44qMLb5VzUuIUqFjdO38d/PPzjVDb0hlWDlDEJTB8PT79E8CSfwXTui0wTm6Fd6UTjLrAQkpgCeIBiosCZFwaVjxA4RKgRCmBfXI7wNLnpCHJMQTvA6SFkkoBog4wPLfyizahAAm4DEGAIjWLJjIBqt0MUL8NwJsmdYDpIWIPkJYA9egSICqB8SZpQyidYNJIjWhiR21rSGnDuQk6whIYqm/oI0OQX8umETriLKCe7uBjG5bA4k2AYtwCb7IwQPKuKEAOSmAJpwDhYo6IRIwVFSp/IenBEFH6XmmP1/P/IMRAVAGXIQiQkwsF1aV5WTaRCdDGz6T/h88MXd0Twh2HYaQAGZTAstJSIFU+2Vn6gKgMVhV9ArSzri0km8RpEGLEChB/Adr+jeMsIFNFzS6pNzNBJwoBwlErsYJBaRgVQyTxYSlAieQBwhIzIcZdVXwHGEFdAtOkQGsVoJaqWO2qQC+HIECRXigSmgB9qh5+qoewTdB0krJXAkMTaHCVZ+EDGjApZiUwXgEyHdRqNgk+UgWouTL4PSpANgjNqP45jFBiyQC7wSI+rlElTJUu0CEKEHpw4pnMHQ8FyOBzUS+Xv3D0CbZvJ60ChMpwvAiQEoIYJEB0vlCVwHgDNPtZlMAE3IUgQJFeKBKVAGEnBXaAmfl/XDFBF+rW9/WyceiEZ9sIXRlrBagrPiZofkWLJ/eaTZY3wZbqkfIgzojygIxa4OmCg8c7BIJG5L7mAerBxPP2kPKNU/UHUZxIadB18SNAwQ6w4OcmmBPWZVwC8/WX/hcmaAGXIAhQGGMw3vpxJ5zxxDfSSi5KBOiBT9bDta+tUOR2x8BSCpbssGxAikpMTND6JTCEogBZlcD6jwPweGNCKnfUtYacmO2iVc4B8kVcAqvU7NSS2Bmh9XxtBK+X6wSLTRbQf77ZCr997ntok19bRj6IbMeyC4z5oTwhnw1SgJz6fxJPAUrUEhivAGlLYP2is7/LXwZ47gSAZlFa62sQBMjxGIwceOGbbfDtllr4YOXuqBAgPEE+/NkGeHPZTlhdHmab856V0v9lB5qHx7ltgpYVoFw9BchuGCKmvhaNglhAXQJz5gFqdk0B0qxo7fqABuRE3gpvRoBUnWDRzwKqaGyHP7+3Bj5fWwlfbqhSp0CnZsYuBZrIn87igMZg5IehAJVwBCgi35brJTCZcMQpBDGkC0wprxuUwNyeB7boPkkt3yR7JgX6DAQBCiMsjpJcV+5qiAoB+mpjcCWyuZrzHjkBGVfzh5pv57IJmozBuiUwrhXeEhSIGEXgRWhXBCWwVm4avCseoEFTHXWCuaIAmZXAYmyEfuarLdDZ41fIkNoAPSB2KdAm5eGgAhR+Cayj2w9NXGJ6X/MANViZoI08QGSC7ulQezIjAao+tXLJWZTW+hwSggA9+uijUFZWBpmZmTBjxgz47rvvDLd97rnnmKGW/8Lb8TjvvPNCtjnmmGMi20nuQlHdJK0CV0WJAC1cFyRAmyrDJUC71EbWGClA5AHSU0WCJTAbRIN8QFE+EfMXIqclMCUHyC0P0PgTpf9rNtqS46kVflNVM3TJxMF9BUg+fpqiS4Dwtf/vt8GyjGLsVgzQMfT/hBih613xAGWlpyjKaNzLYHXxLIF1q1KgQxUgAw8QBnWmZrlLVvhys+gu63OwTYDKy8vhuuuug8bGUKWgoaEBrr/+eqiocG6UfPXVV+Gaa66B22+/HZYtWwZTp06Fo48+GiorNb4IDnl5ebB7927la9s2bjUjAwkPv83LL78MbpTAetJylBybDZXN0J6W5+ooDL8/AIs2BD/cm6rkkLpwjaO0gg9j6KMhutEY2urYAxQ0QXcnBAHaUaue3+a4C8ytHCA6mRePDj5vGz6gwQVZTH3q6gnA1uqWiEu7uohRGvSLS7ap5sjt0SpAsewAM1FHKSuqINu5ByhhfEC4WOM/7zHvAqMSWPAcoRuEqFWAVGGILu0zr7aK7rI+B9sE6IEHHmDkB8mHFvn5+dDU1MS2cQq8zUUXXQTnn38+TJw4ER5//HHIzs6GZ555xvA2qOgMHDhQ+RowINQcmZGRodqmsFBjqAtzpdzuzVZ+hQbljU1pripAq8obVInEuLoPC3TBIg+HnZO836aKwK2Ildvb8ADZboNHmBm3XcJOzgAdTg5Qq1tJ0GSC9pUADDvAdhnM6/Uog1HDLoMpCpAmBDHEAxQ9EzROR3/26y3s+zljpU6fPYoCtDsBCFCoCZpXL5ygOBEIEBmgvdy5K4bjMMxM0OzcYKQAqcIQXVJreL+dCFjsc7BNgObPnw/nnHOO4d/xb++9956jB+/s7ISlS5fCEUcE27S9Xi/7+ZtvjI2gzc3NMHz4cBg6dCjMnTsXfv45dHDmggULoKSkBMaNGweXXnop1NQYH9wdHR2M3PFfoRtJF5g2jyzBylhZ6w16hFzISlm0vkpV3thc3eK8EwxPZrRytiqBKaGOgaDPScaf5v0Mp/zr62BHDoHUrox8AG+KfQWI7/SwAg5vJbk7yh1g5FdyUgLr7PYrfhVfxASoKtjmO9Q+AeKPk7Bb4WkMhnYOWAwHor6xdCdUN3cyReuig0eqCZAyBywOBEjXBB0ZAUoIBYha4JVFRiCmw5wbdV5DaoNv6eiEgFEQoioM0QW1Bo/93SuCPzYZVx2s4jCOe+hLuOfD6Md29HWU17fB8Q9/CY8tsI4KcZUAbdmyBYYNG2b49yFDhsDWrVsdPXh1dTX09PSEKDj485498gVcAyQ0qA6988478OKLL4Lf74dZs2bBzp07VeWvF154AT777DP429/+BgsXLoRjjz2WPZYe7rnnHqZi0RcSKyMC1AJBBQixrIK7TxdOIgtlAvSrGcNY1gteaHmjrm1TbaBHmlRP2RlGSMsESMkIkfrR3/Tc4q3w4/Z6WLGz3sD/kx/60B3WOUC2Sk1IrPqPhViUwCYMkkhEkwMCRAZoRHYkJbDujuAFNqd/UAHavRygU61Q6WHcgAgVILsmaFRiotC51N3jhycXbWbfX3TwCBhSmKWUwFinVDwygExM0OHOAQtJg45nFhAZoPuNCj7HGJbB9IIQSQHKCbSBJ+A3KYH1d69chXP3/MHPcWdDeARoxY56WL27Ed75Mc6J6X0Aj36xEX4ub4TXf9gRWwKUlZVlSnDwb7hNtDFz5kymNk2bNg3mzJkD//vf/6B///7wxBNPKNuceeaZcNJJJ8GUKVPg5JNPZsrU999/z1QhPdx8883Mx0RfO3bsMCwVNAUylCRYxE+7moMnkQjLYKhALNsukYtDx5XAyGJfeGUwKn/hRUOj0NhNvX1CvijprlYNOsCsCJCjEhiivzwTLMolsEml+Y67wOh5IklNS4mgl4BWsjj5Gl/PgmEAuaXSidnGYFTqBFtX0Rhhd6MBAWLjJzxSIGAULpIfrNoD22tbociXDmfsNwwG5mcqGUvsQsl3gcUaOp8LxQQdRg5QwihAVALDY41KSjEkQEoXGOcBykzzsmTzAo98rkvzhSaTq0pgkROg1k1fs/9X+cukh+wI7/xdI1sW+EWRgPvAz8zrS3equ0QjhO0zN3Zn/ec//zH8Oyou+++/v6MHLy4uhpSUlBDzNP6Mvh07SEtLg7333hs2btxouM3IkSPZYxltg34h9DbxX0Yr5YYe6UN5wEjpg7ihsgn8me50gi3eWM3KXZjwO7Qom407CIsAUceOlQHaYKW7raYF3v+p3IQA6UvUuGI3mgXmuASGKBkP0cQOWVmbVJqnnJjt5rNQCKIe0QvP/9NfavPGLwc+IJoJhmoWbyIOJ+BTF6npwVW3y2UwfK1Jyj53ZhnrksLxEqSusJNcXLvAdEzQcg5Q2AqQTIAoSiOuJbCC4TEnQPie65XAaFROITQZqz8umqBxP7YslXJ/PurZl/2f0dMsKbIOQZ5NPCfEPd+pF+PZr7ewigiipbMnvPNduAQIO8CeffZZ9j9PWPD7a6+9lrWn49+cID09HaZPn85KVQQsaeHPqPTYAZa1Vq5cCYMGGZ8gsTyGHiCzbSwhK0C13ZnKRRNzPdCe05Ya2i4bSfmLjKCj5FEHjjvB7BqgDcyeWJLgbUchcr1BCzzmm3TLNzRVgOyWmvpHjwDhiYoUoIkyAcJuqvYuv6MxGNmRZgDRSpYvVQ6baTsQEZUTuqiGNRneqg1eZYR2V+LHbsc1uxvZa3jOzOHK7wfmSZ+xipp6LgW6d5igE0MBkglQ4fCg0ThGBAg7aOkcwZugqQxWSAqQnv9HG4YYAd74YRsMa13Fvu8ceRR0BVLCfh1IAcLnRb5AAXeB+VD/WaLu9q50QQWyTYAOPfRQltfzyCOPQGlpKeuqKioqYt/j7//5z3/CYYcd5ngHsAX+qaeegueffx7WrFnDDMstLS2sKwyB5S4sURHuvPNO+Pjjj2Hz5s2sbf7ss89mbfAXXnihYpDGlvwlS5awshySKTRKjx49mrXXhw1ZHanpkj60SH72GiKdIOsDvogVILwgkwF6NhGgkjAVILsZQDpmT15mJCJmtwTGKzs+HWMwXTTsl8A4AmTDD+MEaLpFsoOCy5iSXEihSfU2900ZhBqpAZpCEFUESFaAdn5vqzuHjNDrw/EBWXmAVEZodwnQYwskRfas/YdBoS9YUhokl8EaqnZwKdChfrNYm6CxWw1JviseIDcIUE8YK2BUKJQSGKcAUedVjMpf+HnTLh5wgVQAzTYVoPAJ0PaaVnjl3fmQ62mDzhQfjJy8P9RBbtjdZbUtHSGdoQLu4qVvt7Pry+iSHBghW0MqGiP/DDk6e19yySVwwgknwGuvvcbKSXjRHjt2LJx22mnMBB0OzjjjDKiqqoLbbruNGZ/R24MdZ2SM3r59O+sMI9TV1bG2edwWSRgqSIsXL2Yt9Agsqf3000+MUNXX1zOCdtRRR8Gf//xnVuoKG/KForJTOvH1y0mHyYPzWWx/ZVc2DI6QAG2sbIbyhnbmKTlghHRSGlksXZQ2OyZADo2jnNRPMuPewwrg+CmDmCoVcrI2UIBIFUH1B1u0taAVHxIPfAx8rqbIKQl+X70eoNDC0B1GB9igvEy2H9iFUtfaxU7QA2QFwk4GUMST4OmEyz9X7M7BtnQk3ZWrAQZOsTRCf7mhOjwjtFUXWJTSoH/cXgdLNtdCWooHLjx4hOpvig+oZldQ/Yl1CrROaZjUH7x4h1v6pHEYqBpguZuIt2Ps+B7ghZMADv0jwKwr7N8OlROW4eUByB8SJBoxUoD4EEQse/FgJTBPk3ELvEoBqgnbdH/1a8thUs9qtvxPKzsACnOyoCaQCyWe+rCUJT62BM8LPJkXiBwd3T3w9FdSTMYls0eyEVFbqlugsilyBcjxp3jw4MFw9dVXg5u44oor2JcetMblf/zjH+zLCGjE/uijj8B1yKWCivagAkT5LzvaM2DvCAkQlb9mjChiXggETftGtQID2GyHrzkugUkr3fbmWvjPN5LMeOmcUYq5N8SvYDUI1eDiwPuCUNLsJ6+GDcGfIEkpcXkK/JDCbOWEjATIbnlOGYPhVgo0rWwRaFwfuh/Aps8lH5AVAYqkFZ4b8WIIOo6oI8sFPL5Q8v7MnTYYBuWrmycG5kk/d9WXc0ZsiLsJWvH/6Fy87QJLlnhTJD91rZ3KeAzH2L5YIjKr33FGgKj8he8pmowVD1BtbEMQdYclpwVN0IYKUGQ5QHjcLd1WBxdmbGA/e4bNZIvZ2kBe+CWw5s4Qb6CAe3hr2S6obOpgyjCeL77aKJHUylgqQA8//LDu77FtHFUgu56dpIXcBl/eJr1keOIiGXxba7r0SrpAgKjsRBdXfNNxLAD6gKYPT3dognbmAVq7dSc0dUxhMuMREwaw1k6EXQUoOAZDXxWhlTMSJdzWkgDxcJJU7WAI6pCiLHWLvs0SWLMSguiSAoQhiDzQB8QI0DcA+19kehfjlU6wJqbKOro4OyqBuWOC3ljZBB/9LPkIfzdHyv3hMTBfOi4C8UyB5gm+bIJW/D9hlr8QqSle6OdLZ4sa/FyFTYCIsFSukcpadt9zIkDYAYaIsQlaCUHU8VBJJuhmewpQd5ukXpoplxr8tLMeHvwUiU8ADsnaBIACwrADoMiXAauUEliEClC8Z7z1MvT4A0pH8gUHjWBqPamobnSC2SZARqoLlpmwdRyzeObNm8d8Qb0S8oVid7v0kuGqAU9eaGqsb5UvHmESIAwaxOnyiEPGqcs82AkmEaBmmD7cRpo1ngzDNEFv3blbkRmxhNXfSK63UoA05kYeuPLD7ZwOHoX2CAZ+6oAM0ENlBYjKc3bDEFtdmwTPhSDyIB/Qtm8sL3BjBuQAvjV4IkbDekmudQnPkQna5XEYTyyUTmhHTRwAo0tClaeBsiKU1loRvw4wvgTGQk67IxqEygPPG0SAJoT71Mizg/uGnh40NDvtAIsDAaLPl56JHD+DSgnMSAHCbkXMLcOBqEhWbBIgVGyvemU5Myr/ZoIXsrZUSNETg6dDUU8a1MgKUHdTleOyCE+AhALkLj76eQ8rd+Hxgl5BBFkUUBWKaRCi3hd6ctAPhN1bt9xyC/RK4IgI+ULREshiF5tCuRw1ZXA+1AciI0BLttQwT0xpfqbS+k4IdoLZ9AHhPnS3O7twYKIzXnC6GxWZUU+ut1KAmju6DMdghETey14A23A6rd52CSxLbdC2uV+00vNFbII2IECDp0snaFTzGsxDv7B1vKyfz3kZDE20dKwYtcGrFKDIS2C7G9rg7eWSkvS7Q0bpbkMm6OwO+bXJjUMGkColXfIBNSgt8JF5PFzpBONLVugTs4tEUYAy9RWgfGgx7wLDE1IYRui7P1jDUvWxw/CmifL5a9BUgPRstihr8EjvdUejs1I7nhtruXOjUIDcA6rZVCo/d1aZstgsoS7RWHaBmQFzdv7617+y7qxeiS78UEqtm02QxYgBqSFohK6HyLrAaPr7nHH9Q8oXSidYpc1WeFqlo1SsFySmA798os+FNrjw4JGKORk9QEXyyV51sjZUgKyzcSj8DD1AjtAZnRIY5i3x+6XrAUICrDFdYg6FqwoQpkDzwJUtnqAR27+1vJuxciK0IwLEjz6xY4LG7SMkok9/uYXFDaDXbZ9h+hc5WuEV9NSGpQDVyYplxMAMJBrH0tHomgLkSho0f66pCB0FZAjqACPFKNYESEmB1o/JsDRBq8IQ7e3zF2sr4cUl0vO+//Sp4Kv4XhU3gefc9vRCRQFyAvRm8tE/4SpAAX8P1FeJJGkeizfVwE87G1hI5nmzpLBKxKD0NvCCP7YKkBVwTIbR+IreUv4KeLzQDlLpi7CXCwrQIh3/D4EUoc3VNhUgp+UvbpxHUUornLnfUOvVqqIAqS9gZiGIukMP46QA4cVxV71aATItgb1/DcB9IwHm/58SlKaYoCPxADFiZaAAOcwDCssITR1gOBTTjCwjOaJyUARlMGwjf+k76UJ0qYH6g8AVOXqrBnjqHHuAsGNyv7s+hatfXQ5uG6GVOWAReIDcUoBa6yvDU4CMSmBo9HZhlqH9FGg9BYjLATIqgSEcKEB+fwD+762V7PvfHjgCDhpTHAwYpTIzEp/M8BKm+fIXu3k4adC1m2H3A7Oh4NEJ8PNX7zq/fS/FY3JI6pn7DWOiA0P1Rtj39f3h72mPxTYHyAoYRogDSnsl5PJXVwqukj3M/0OYMgQVIImkKEP8HGZSoDSLitKs0VwnkIYA4XZddkK2lAygUtsy4+s/SxfNwZldIYpGyMkaCQBrozUugZkqQDI5sp0GTeDC6CIFtk+iCoHR+9SBZGqC3iErMEseBXjqcIDKtUETdCQKEBJJnNnG7ij0vYehM2wnQg/vJylZ6Bdz1QCtLYORwT4M4DGEK2QcI6NH9gm4IsdShUKAHHSB/bCtjvk8lmx2SdHgIiKCClD8S2Ddzdzzq1htn3BTOZVKYOwz7HElyT7SEhieN5QcIKMSmMMwRPQv4mcChfXrjx4nPUcijDR4GF8a+T69bdVhhSCGlQOE0tGP/wV4/GAobZZCGds2feXo8XsrVu5sYN1eeF1UxWRs+wo8/m7Yy7PZlTRo2wRIOy2dvnBu1ttvvw1XXXUVy/TpzR1gnSnSRYZXgFCuT/UVBUtDeJJxgIUbJAVg+rBC3ZPCgLwMpjLgSX1bjY0wQGpVtkmAvt5YA8urJA0339tmLdcrA189incoRAEyLYE5GIiq8x64OQS1tCBLKWUG96vbmFTifKKKlQBPzoEZVW+ysmhOJDlA1NqPpUQst2hBK1Q8YVtcnMK6qCoGaBP/j4tGaN4Aa9WpNjTPA/meVscKEI5xQaA87spsJi4NOugBiq8C5O/xQ1YPp4jWbADoVl+IddG8R5rphkOSidBi5AKRjRiUwZQ2eD0TdJofcjztripAe+QFAZ7HWLwI5ich+o1WlZ29sgKb3lEbGwUIP89vnA/wzmXsc9jqkRZiGc3ujptJVjxOMRlTS5WoEoZqKb6Azg2RqkC2CVBBQQELHtR+lZWVsSDEI488Em666SbolZAvvm1e6Y3o51OXC4YPlsiGB31CDtu1g+nPxYar4ZFOZoI5VIAeW7gRmgLS8/Lq7HvIyZrKX1ga4AIqEU0ddkpgNBA1fiZopQVeLn/xylRICQzLRKQ+XbIQYNThzDh8du0/4am0v0NBoNHdEEQe+PsiLBUFgiduAyjvkxNfCZFKWwpQacRGaGWQqA0CMSZbIjJdXmcp0Fu5RYKtBYODNGhFAcqOrwdo7Y49kAbS56cNMqTBuRgUarf8hQGIKdxnNIY+ILMusAKP9J734GVJs7gKdyDqHvkCScZ6pZzMlb8QaXkSAcroxo6/rvAVIDseoK1fATx2EMDPb0mNDofdCv/KuoT9ydcmpfD3ZWypboEPVskdyXM0pXL5OM9jx0og4jRo2/r9F198oft7HBw6ZswYyMnJgVWrVsHkyZOh10FeKbeCdMHkS2CICUOKoXlrprR6QWZvJt/yd9vtZwNQEXPGGlwE5U6wlbsabBIgSoEutZWLgQpQvlc2wOLqsKsdIC3TmACZTILnk6CNkBeuB0hO43WzA4xa4E3HdNDriW3iuGr89RsA3z0BXfNvgSNTlkHH5ycDFD0BMPpw5zti5v/hfUC1m6QT99ijLC+quCLFUqmtCfV2WuBDCNCuqFz8tBiRLr3fTalFUOQg14gUIPp+wiCdwcZhpkFHOgfMLQXohzWbAHPvOwJpsDJQBvt710l5QAMn258CryUUqCLFQgGSFVa9IERaTDSAD4o0iytdBcgOAWqQPutKujuVk7nyFyIrrxh6Ah5I8QSk18Gm6ljLhSCyXTIrySCxWnAPwJcPSIuaopEAp/4bYMh02Pz1o2yT/HZhhH5y0WZWHTx8fInibdQSoHTohgzoijgN2jYBmjNnju7vm5qa4KWXXoKnn34afvjhBzactNdB9ko0BTJVFxsCa4WHHMjBZC0HdXRMJMU6Jgaj0URyPShT4e10gjkwQZPMeMReIwHW4kUmIKkdZgTIoAUeQfVYUnlcbYN3kQDRGIyhcgiiqQeILvhYAqJp7QdcCpcuyoLrm++Dce07AV48FeCAywCO+JPtzjvDFGgtcKW6/MWgD8kAGMuA5Tw0eGMyLY2TsOUBspOl4sJAVCcEaEiaPHvPWwR2k8XQz7atulVXDXKnBEYKkDseILw/jPnPSHVWRv15kzQWALtP1/mHygQIO8FOtz8ElUcMFSCzElhOQFIk6wK5UGgW6EkLBhslMPLEMQUI/Yu7lqobDGQU5WayeWDF0CgRK7sESJ4Dhr42nBNnqADVbAJ480KA8mXSz3ufDXDM3xT1dWOXdA4o6K6S4il4ha4PobKxHd6UZ1GGNErg4pxUTDyGoCXiNOiwTdCLFi2Cc889l01Yv//++9mwVBxA2ishX3wb/Zm6ChAaoRvkgajtTTWO059x+Kne7CyCo6GoNgkQEpoPV0ldexcfMiYk9t/SA6SjAJEHyJcehTZ4F0tgFILI15aVLjB5lW/lqVrZPQRO6vwL1Ew8T/rFkn8BfK2flu44BZoHnajxxC13oOkBj59i+bi0rSx0xtYEbdYBpAUZoCv8oceZEVD9ojKsVg0KG8rnAhWg4CiMSIAEMF1W6Mrr2x0TiD27pfegHnJhXWCofSO0tgOMEMN5YGYk2NcjnXvqAjnmpSQHJmgqgQ1AAlS+XApQxNv3U19c0dZQG8h1nC9EJTCK09BVgFDOeOmXEvlBQn36cwBzH1V97rZ15jBFLwX8AI19twz2+tKd0Nnjh32HF8K+ZZqlTy0GqAYzB/I9LRFnATkiQNjmjnk/WPI6/fTTWfmro6ODmaDx9/vttx/0SsgXirpuiQxo4+tRXm1NkU6U5fLJKdzxF6YKUFUzW+WarujJx2NBgLbXtrLP5eCCLElm1Ax+DEcBsuMBCpbAHCpAVJ5z0QTNK0B0QsbngK2zoZ4qmQBw3R4dkA6Nh90NcPhtwentkU6C1wJP1HjCxsDC3Sts+oDaE94EbYUiv0SAdnaH5/9hP3NqUNiQPxc9bfVK9lOkHiBUNqYNkz4/H//sLDpk8cYayJOVks60fKYA2W6FV0IQjRSg6M4Dw88VqcR6DR8ZXfLIkYDPvEtUMUHX2DZBMwWI9/9o1CU2DwzyHLfC0xywobKfUJe4NewEqNko+X1+9zXApFNUf8aSNb4sOwPF6lJlH8Q2edFy6HidRaHG55YHrVARYRaQbQJ04oknwrhx49ik9QcffBDKy8vhn//8J/QJyKWC2q50XQUI4ZF9PxUVu21LfWvkWVssm8KixRkFIjwpmBonSa1A46ZZsi9HaEryZDJHpkMiOAZyvR0FyMwDpJignXaBudQKjycbTCPWeoBov5AUNvOdHOQBojBAudSiTIPHzpLSvdUXGLugE602BJEHnqjJsGmRB6SodXZPCo7a4EuDF50wiagTD01et/TabO3Msxf/wJ086fhzRQGSTdDdLXXK20Fl3Egwd5r0er6z3BmhxEUTDQztSC+AdYEh0h+wvd3q8xHnEhguLmj9pheE6JHHe6CyZaoQ0/4igbc4FkkBYgN2qYysKX8hMGcGJ8I7fR1qNQqQbufhbjmTqmQCQIE6Z41vnd9FBIgr8/Q11Mqvp5L7w0PuACOgETpmXWAffvghXHDBBXDHHXfA8ccfDykpEQ6BTCbIK+UG2QOkN8AwPVf6UNbX2ItSX7ShWvEPWQ1ExFEH9AHbXGVyUuf9KhYgIqX4mbi8Ex54sUpL8QRXOyYKUIsNDxCVPxyXwFzyAeGKEAUeTLvmX3d8jbGOH0LOdEqK7V1+dh9KDhCtqHHlZqbQadFiQwFCKATIvMRMZBXnTNmCExM0EvzUzIimwtPraocAZbRVKiUwu4SOFKBZo6TP4u7Gdha+GBFkot/T1qAoF8pMvAhw3ORBLIcKBw7jcFg7QOKNXaM0MLQnoxAaIQeaMuRRIWiENgL6Shp2GZugY0CA6P3HZF9d35OsQGEJzFQhxnMVhney21Sbvl6kAA3MS+cCEEMJEPowawLSObC7qdJ5CUxeTOkqQOU/Sv8PmqZ7H7Tg2hGQVI9A3Vboq6huNiNAagUIx6ZEmgZtmwB99dVXzPA8ffp0mDFjBjzyyCNQXe18cm5SQm4XxjlguLrEi6UWuYXSRaytodrV8pdeGcwQilphbYCmiwpdNHmzp1auJ6LAbkMKkKbTDc23VCKwowCFlJpipADxLfBa3xWRM1UrvEIqS3WzPrLxWMC2YsxFwoBIJ0mydjxAqkToJaYEy3F3kRMFCKWPCI3QTkpgnmZpEGoFFCqreCtslxWfvYcVsnl0+FKR3ytsyJ+LgHzsRVr+IhT60pXP/jybKtCmqhaWYN4vRU6mlz+DezJGWo/EwOMYQzdxkKg2WDJGBEjxgBkpaG1BAmS6QMJj0UYrPJIoIiSDunZI94+jTQbtFbIt7lOdPA+ss8EeAfJzMxKpnK6bA4TeI0SpPgGiheOOgHQ8dNcKBaifGQGSF2J5ntbYeYAOOOAAeOqpp2D37t1wySWXwCuvvAKlpaVsCOonn3zCyFFvJ0DNkKkYTbUo7j9ASYO2CmBDsvDlhuD8LztQhqKadYI5yAAKJUD6Jmh+G3YbJQdIrQDxH3yz+Vh08sOLk+PYeE15LqIOMD5cS4buQFQdEzRJ1jiugZEo7Pyivzspg9HJ26wLDDFwL+nEjSdwjQwcUQnMiQKkMkLvjjoBoseoCBQqq3i7CtCI4mwYXpztjg9I/lx45M9FpC3wPE6iMtiKcnNvn2bRNDpHukik+CQSsCVluLUPSPH/DFXyu8rr21gURswUIJMOMOnx67gSmMW5wUYrPF0c8T3L3P2d9Msh+wKkhD4+fo7b05zNA8PnQzPnqKEiJAka31cqgVGpXAPyRe2UCZBflMAgRAHC15HOfbKShh6g1gjToB13gfl8Pvjtb3/LFCEcf3HttdcyA3RJSQmcdNJJ0CuhTILPhH4G5arcgv5Ka97qcvNSzXs/lTM/BK5Spw211+ViKwyxyQUFSKfMpOoEozZ/7RgM+YSF5TIqJekB1TMathqPMETtFHgelE2itMJjui4ZlTkTNH3gsvluNyor2CVAna1BAmJVAsOUaDxxI966WGqp1UFxbpQJkGKE3hVdAtTVphDxqkCBbQJEnp/h/XzsC7E1Uh+Q/LlIkQfHukmAjpgwALLSUlhgIw59tEuAhmVJr0d6rkQCgkboNTY6wILlr0v+sxROfvRrWN9E5aTojsKwLIGqFCCLc4NC2qrttcDrzP/SojtD6joK2FRxqfzFptjLzylkUYfeLCSWaIAumWRLAfI69RL2EnR0B8mMNmyYqc44lBxTzGUlrX+qtLiJRAWKaBYYmqLvvfde2LlzJ7z88svQ+xWgLH1pDiHL0WhQxNBCI6AB99a3pbkv5x80wl5gne0SmP0MoBAPEJd4a6oAGU6CDxqgrcYc5IVrhHaxBEaeKtMSGI4OwLZL9BvQCZczOqrGYJAPyO7qjcpfKOdaGNYZDrtFes3RT/D4wQDL/hNSDnOcMOykBKbKX6mJLgFqkjqjurwZ0AjZtkpgGF9QJ5ussWmgTJ6NFnEatPy5SMOEYAhEnAHEA5XSIycOsGWGRi/Tt/J8s/4p0nPKypfejxWdg4MlMCMlSQlBHK6Ub9buaWRetrfXya8vkjyTqIVohiDyHiDMVLP0CNpQgCgEkWViGSRA8/DLn3FvW43jcg2p3ugPJFVIVf5CAzSXr6ZPgKRSeFprRVTfh0RFrfx6ojcuxCRP5a+iEcp73z+9Pb4EiICG6JNPPhnmzZsHvRLyhQIJEK2yDQkQtBgSIDzpXPf6CqZ8TB2SD78/bLTtXaASGHoA2owyMnT8KkaoNvQANdorgYUMQrVugdeWweIxEHWHTgp0aAmsK7QDjEum1VWAqLPG7uqNT4G2k3SMJ+5LvwYoO1haCc27AuC1c1Sty/2jrQBFkBeDxz4pa5bT1GUC1JqBFwSPrQGv22pblNcA35fhRe4qQN5AD2RBR8QZQEbdYO/+VK6+cGqAw10xaK80PxMyuqTPga9QumAubcVjKEX6bBqVJ+vVChCqFzgQGPHGz40QwNtHuRXesgSmKEC51mUNG2GIexqkz8GYrGYANBZ7vABD9jfc3iN3Y6bZnAdGLfBYrsFyOEFlgaDyl4EBGtEil81qIRdaA/L5uF4eWtuHUMO9niGLaCp/FY9VFt/FKe0RDxV2bRp8rwZXAiu2owAZyNnPfL2FjZ5A2fsfZ0yzrf7QQYEGTFzg4ayUSEzQ6Dewa4K2rQApLfDWF4jcsAeiulECC50DZphRZJQBpGf2Vkpg290bg6EFmq3PeUdKnEZJfc08gMcOBNiySPU+4cXD1iBQZRaYDQUqwrwYvgXaWgGSjuPubOkCX2GDAJH/h5QfVIFcUYAwJVsmB+g5cMsETTh4TH/2euBny2yC/aL11UpoKrWLF/ST1KO6Dg/42cw4k0BEUiZlos6vmiubu6AroyDqPiBTEzQeHHJ53V4JzIYC1CgtdqbCOukXAyYFvY46SM+V54EhwfRbdw/WyCnQRb4MVvan7kBVJxh1gBn4f9hTUD6rHqUM5jhSo7e3wNcQAcLQXulYLfDGuQTWZyBfeO0oQPnQDJuqmkIuQCg33/uR9EH84/ETFE+PXSAjNi2DoV+F2qotCBBK0Zi2iVBawc1M0PI2dWh0724zV4BsTEcnCbypI7YlMCwj0PA8/RKYpjRHq2lNrABJ1tmRlMDshCDqAad3H3Q1wIWfSrPJMJn5+ZMAPrkdclL9rMUYUd3UGQUFKHyzrGULNA+5A8wjjyPYLV/IzLBNXhSQ96es2KcQXpy5FzZwJSp/NrDrxE0PEAL9cMdNGWTZDbZwvXS8HDK6UPkcZOcXK+93W+F4aUM2EsOsBFbG/tOqaqi6RJsAmXqA8ByLQ13lEpjlrEDZAG62v+QdG9u+Snf+lxaZckmRDbW2QfJpDhiWwPD8TCqQkgaNpM6iAwzBq12CAIFuzp5SAmMKUL7it0VEMhBVECAr4EFMJbAAeoDMCVC6pwcyAx0qIzSau656ZTk7ER82vgR+PUOTw+GwDKabBcT8KliPTFf5VfRAScFIRJSWfjMTtEz6OpropOAJmdZsJwQxRGlpi60JGsuHCDxRFeqs5ENLYPqeKjrB+fRM0Gh69PsdTIJ3SIAIuKK8ZBHAPudIPqWvHwTP00fBJF+T/TRonHRvdxZYhAQonA6wtAKJGFQ0dFh2SWkVoJLcDEYOsKpE73vYkD8buUwBcs8DpC2D4QRsFjaq41vDFnhUGGYNCR5znqwi5bNZnzvaWAFCPwmRefk4JV8VLYB2dGRFnwDJ5wi9EERSf7q9mSxh3Q0FSDFBNy639P8gCnOzoTaQY3scBpmgi+QLtk8+HygKEJ4LUK0zMUCzp8ARIOoE64thiDWKAqRzjeVLYPLi2xeQzl+RZAEJAmQFHEGA+Rl4oJq0wUNalpSxwXxAzaqujr9/vB7W7mliK4W//WIvS5OwEUwVIP5ibXH/ldryl00TdFezTIBwRayZ1hwcg2GjBBYnEzQ/BV7vPQiZVG8QK0B5Rz5eAcIyGZZKcGQHkVG3S2BaIHE56Z8Av3xBkoV3L4fL4VV7dXEMxsNjO6wSmPOLpKNJ6rIHKKtoCDuUUa2k1aGdDjAEvr9lbnWCyZ8NTJ512wOE2L+sCAbmZbKL/oJ1oS3Yi+TIjH2GFUCen8qW+WxgJqmzFVmjjBUg5icJAKRlKwZSMggfM3kAe+yqnpz4lsBkxYVKcbZN0GYeoMZ2YFGRdWtsESA8P9cGaBxGlePMGlKEFUKjGKAnGhqgpe17dBSgvjcOo0Zu3ghpNMJSPZ2LUfWWFySZrDFBlMCiC+qUkQmQURs8O1NzPqBVshF68aZqeOpLHOIG8Ndf7KUmHa4SIPsG6BD/j4UJmlaJGfIBF+4YjJA0aKf5DRESoGAHWJbpfildYAaeKipvqkzQOL2ZBSLaXL25QYAIE+cCnPAA+3YY7LZHgOS27rBKYOgDQwIVNQVIIkCp+aWK4mplhA4qQEE1S/EBGXnm7EKR3Ntc9wBRBs2JU43LYAtlUsSCE2X/D2QXqj7D21Kk0hZUrQ99b/gZYDLxp9eztCCLPXawBBZFE7TZMSA/r26FAEWmAGG5G0n38SnfggcXsIOmBj+fBmDjMBzMA9N6VnxaBUjx/xiXv9hDyedBXFzvlDvB+nIJrEhLgHCOGp0rsRFD/jxiZ6YH/MIEHRP/TyATAuANto2b+YA8UicYnvSve20Fq6Kdtf9QpeU1XNBUeCyBhaQoO0iBprjx/rncqoRIDV4YNSdQbPHEmVf4vPRSoHkjn9kYjIjb4CM0QQczgEL9P7pBiIqqNlh3xaZSgJxmAdlNgbaLPOnkXuSXLiSWJwUi9lgyxZwhO1De94DjUMpwCBDkDpAyXCxWeeihqJZXj8Nk0oMIKkDupEEzBSgKBAgxd5p0jH26pkLlCcE5aIs31SgGaIWgZBWpCNCW7n4AaT5p2jmbmm3cAca/nqj+4GNjBxKi02YIoOtdYHIGUUB+XraDEPGcoNMyTv6fk1Pl9vcpp1vun6QA2fdCBUs2sgJEHiDyf9roAOO3RzIqSmAQSoCo/NVvjOpa5Qn4wQft7Fi2EySqB0GA7HaAQaZ+PoFuKzwaoZvhhjdWQHlDO/Ml3HL8xIh3BScOY9BgW1cPm3OkgnKxtjEHTL44qsp5fHeEgQ8IZ68YToKXT1g+XhUxQG6c2uB3mHSAhZTA0MdjYYIOSbxWWuFtyNfNVfZSoO0iVyLXeV144g5YZwE5NUCTykVE2WGpRCl/2CFAVELMHSRluFgoQNtlgoMnTp5gUTlsu6z8hQs/lcAATdDue4AQk0rzYGR/H2t15yfEL9tWxwgRPrfJpfmcAiQToBzp9alq6QIoMTBC0/HIDUGl1xNfX3xsr2wqrtgTXshlxCUw+Xl55OdlWQLD41Bp3a/RLX+VQjXs61kreRYnnWq5f0VcCayHPp8mqJW7wEghp/MBS4O2aYBGNMsLKiT7SgkMS3vk0evrYzCqyQAtEyAsJ8p2k0jToAUBsgJvgM7RySfQIUCY1IoCzUc/VzDjIra8m42HsIvUFK9yUt9UqSmDGbRs2y6BYTw8egRMCBBNodYtgTnJAaJuK6cDUSM0Qe80CUHk94udqPEE5Mf9w/Hf6tlJwUnwmucqd9g4KoHluKQAyfOdUgOdjKjaVoCcEKAIfEC2FSBMyCaimzuQKRQIszTooP9H/b6SITpSD1BnqqQK5EahC4yA55W5UweHhCJS+vPsMcXS2BUliV2tALH3G70mekZoTQo0PyR0UH4We+yRwyVy1FBjw78WJkhZ1X0NZWXL6wsqQKarevQgmswDw+d3Yoqs/pQdBJBvfV5EgzspYR0W88Bw32rNFCAkncwAnQYwYLLpfdGCChWgRvBBM/j6pA+oVukCyzDuANOosoMy2iMyQgsC5CAF2mpqOxGgsXlBNophhzic0S0oM8G0PiAnYzC0KdA2jdBmClCzTGZwvIcVcuWsIMclMJ3ynFtjMPgTM64ouup3Sr/MGRAyOyhYAksNrwSGz4EIhBseIFoVycS0xFNvwwPkMAU6VgSI1B+cfZaRpyhAZmnQev4fxHC5FR69X2Yhg1Zo90r3U5TSpoxxiQZoNthXG6sVQ6gyNJlmBrZqFCCeAGHOjd5MMN4DJHvvyKdCBHPqWHmgamut8thuAjtgUbk27gKTnldqjqSIdvsDLFU5XCM0KlxzUxZLP0w5zdY+pjiYB4avIQVJ6nqAdnMJ0Dgr0AYBGlwgnZd2Qi8ug+1aCvDtk7qJ5XTchZbANoYSIPkaNCy7KyIjtCBALswB074pI3OkNwXnfF1xqP2054iM0FQCC9cEbRWGmJMR9ABFrACFWQKLwAeEJxmqMRspQLyBu71mp2FJkUzQ6ItSwW4aNDvZ4wmAm2rtBuRS3QBPnX0CFCMFiMiuZRdVk5QBxFQ3j8eRAjRM877ibdNTvOxChYM/w0WLV3qNiuTk2WhhRLEP9hqSz8jaByt3Q2VTO/wsx2lgYCIDlcBMFSDzEhi9lkhGs+RjeNAgSSEp9DSxx3YbfEmLSuAqyMQuLaef0sRqWQZTFKDQY9FfsQYmerdBjycVYIL9GZVdmTQPrMpWajGeAyhKRNUFZrP8xZ87iQBt8/fiTrB3rwL48HqAte+pfo1eN4pJUJXAMJCSTNBUAuOuVYMzpfehMswsIEGAbCpALUwBSrelAE0p8sM9p06BZ87bj5WtokGAVFlAvF8lnEGoNjvBgiZoPQKkk47sZgkMYwYiIECk/uBJX9eDIJcYaf87ancYlhTpuWYbKUANu8yVKgpBxBM4Bhu6BblUVwJ1zOhuWkJwOgfMLQXIcgyG2ndFJmicoWcEKnGVyRPg+RU9dfxFkgjdBNL9FnojzBOygZOmyhPil5fDl3L68+TBeUH12UABYu83ESAc+0D+EfyfLuaUAUT+H5lc8u9rETRZziULB/T+o0JMickqyMTOm91P+QxaDks2UYDK9nzI/i8vPjA4wsUG/FnS6+CxOL7J/0MZQCEKkI0EaAKpcVgCQ+zwF/fOTrBAIEhmNnyi+lOdvDjFY0OlEiMJRGM/en44Ez9dq0qVEphQgKJKgJoclMBSO+rhrP2H6Ud6RwjqBFMpQHiCwxRVnHWDJRsT4OqSPryhBMi8BEbJm/oKkHSCs+N1ohWgo2nwJuW5SEdg6HWo9dRTrICxAhSSeo0+HPygYtut2cR0N1vgdQjQAE89y84xDZoMWwEqCqtd2ukgVDJ1UwnMLO2VyA3543i4kQXUGJAIUL4nwm4yGzhxailTQH7YVgevfL892P5OUDxA0rmGFmXs/fYWyF2FAYDKtWoVAXOD5NsoBEh+bXkClOXphFXb9iiREe6HIBrNAQs+r+CswK7wWuEDAdin4VP2bd3IuY72U5kH1l5jc25V8ByqKEC43zY7wHgFCKcMYJMLDUXtdQSopRqgSz6uNn6mKoNRZzIG1DKvW0gH2Gj1YpHK/ekdEaVBCwLkZA6YTQVImZcVBWCnCL3hygmCLrbMr5JqOb8G7RB4jIWkWlukQZsqQO3O2+DRF4B5HbEgQEoGkEELvLJvdII2SIHmPUCqHCAyZhYMtT55RZoCbUGAhqTVW6dBO50DFmsPkEw86SKNFwm9CyIeP9TRpPUA8aSIymThoM4vkeacGBCgAXmZcMAI6TX+fqtECuaM5YzyShu8dK7BsSL0mrL3e8BEdSeYMgJjWGhCMk+AkAhjJIKsAuFwVjdBJVDD8wOnbNE2tlvhteWqXUthkH8PtAQywDP+WEf7maKaB+Z31LHkk88Hma3lEqFjBmjjBGgq/dColpz0VPZeKp1gvc0DVM89n8adAFXrrDOAtB1gmmsV+vIQwgMULcilAiyBGY7BCCFA8momCsDVEcb8q8pgYZS/cOUSIkXbNUFrFCAstQRngVkTIF96qlLnt10GMynPOZoCbxCCqCVAKc27DUtguqMwCHShMTt5RU0BkkjDkNRG684Ip2MwIhyIWt/a6UwBkpVMJJlEmPVOctTijhdNvfEmVBaLJAuotkc6Znx+nQDSKIBGY1DJaO9h3OdN0wbPK7mVep1gmiGovKEcyZYC/EDK7y36gMzmkoUDSwLMdbfZJkAGZNz/0+vs/0/802FAsf3yFyIzTzruvOA3PY/rZdZQF9iA5jWODdDs9hkp7PyjZAH1NgWoXvN8NkoqnXqwrBEB4gzQ3PWABqKKLrBoQU7MxSBEw0Go0SBAK14F+PLvum75ECO0YoC2nwGkm0htMRGeFCA/TY6Wgdkl1BFhxwSNEid1i9k2QpNSEXEJzEIBkuX3tNY9uiZoLCFSN0tIECI/FNXMwOh2CCJBJg0DPbICZEqAQktg81fthvs+WstWpdYlMPsKEIZ2Uuq3ZQ6QTvaSWRbQVjnlGdUfvYgKNxSgqi7p8TP9scllOXbyIFYKQRw4uhjSyEeI5wJNECKClGmVEZo6wTQdYPwYDJUCxBGKkpRmNrpn3R4uLTxcLHkM4IdnzUMQe7qCqjNTgGyWwHw6JTB/DwRWvcm+fc9/IBRbLVp15oE1yCVPszEbeoM7qfw/uG2tbf8PLRyxuxDf53yeAOG5LorVhJiDyDjORkNs+kxHUcswngHGQ65C5NI8MKEARb8NPiSgKVoECLNQ3rkc4LM7AXb+YFgGCyFA4WYA2VBZ8MAkBajRk2O4ivHZCEJku6odPGoF8ieFaYLeUWtPAZJWqAHIbq/QfU3J/2Pod7LTCeZ2CCJBJg3FYCMNWscEfcvbP8OjX2yCt5btcrUEJmW6gLUCtGclwDY5u6VoJEeAsgwJUND/o09sKQsItwtJT7eJyi7ps5LubwfoNp9J5gbQKH7UJKmcefRkztOH/gk0hIYoQJlcK7wRAQqWwPbIfokBIQRIus+ZgyTyNW9FhKGI2Aww/yaA966CQO12kxBEOl962DnIfgmMCw0kbFkEKa1VbKjp+pz91X4SG2DjMJR5YDYIkI4CNLxjg+0OMCqnk3KOn49WyIT29KLe1wlWLx+L40+Q/t/6tXStM5sEryhAo3WvVb5As2IJCScNWhAgCwSUEhh6gGwqQN1tAF0RtMyWL5ND+NQyYYgCVNli6VexnQGkMkGHrjrSoYsZJNl9dGfprmKwJVS3w8ONNGjXTNBWHqBUyIU2SOtp01XVqGMDn2eGXiaMkxKYWyGIGg9QfnetdRo0zQJLl5Q1XKHTOInHF20yzs0JowRG5Q+czo6eFV3g5+XNi6TjftzxAEP2Vf40SC7VVOgpQNQBpuP/odZiTHBHlbIizE6RivZ018ax2AV2kb7w2/3hZHlEhooooLeEU+7os8ze7/4TJCKBxxgSbb0SmIUCNEs+5OetKA97xABD7Sbl2yHlH1iGILJVvTeFI0BhmKBXvsH++6BnBvQvcGjwly/AtTQPzEQB0ptcLi2IAjCqe6NtA7QSqiqryRQT0ZgxqPeVweplMjf6CID8oRKZ3/a18RgMPC7oPaAxGBoCRPMpUZUPJw06IQjQo48+CmVlZZCZmQkzZsyA7777znDb5557jknd/Bfejgd+aG+77TYYNGgQZGVlwRFHHAEbNsis3CG622gWWJZ1VxeWaSie3eGsJBW2y6tgIwKk7QQzmFruXAEqMD7Jy1KsP+CBio50/TEYDtKulXlgdj1AERAgvABTF4p1F1gaDPTQ1PsCgPRsXbULV3u6qeCUBm1aAquMjgdILoHZSoPWKEA0ToK8ZZ+s3mNOgDoapNKFWwboz+4AqFojlQVPelgZ2skrFbtNPEBGChBGG9B7Hm4rfG27n5XA3RjHYhd4HOLsL9UxxrfAc79XZQHh8Vo0ImiE1pTA0DRe1yq9H4PyNJ8Fuaw2Lq+LHd+omv64I4LzGDeTbFzVR5YhiPT4trtESUHFcy0ei0ii17zLfvVOz4HqNn+bQKVbmQdmqgCFTi7H12yIpwryocmWAVrPT0ifkdr0Qb1PAarjyPjow1XXt1q5C0xVZaGWeVThtXEdMgFK6WhU7BThdILFnQC9+uqrcM0118Dtt98Oy5Ytg6lTp8LRRx8NlZXGUeR5eXmwe/du5WvbNjVLvvfee+Hhhx+Gxx9/HL799lvw+XzsPtvbna8A/XI5KJCea50CyybCF0ReBtu+RK0GaVbblAaNJ/TuHpcygKxIhvx8GiEbqmS2Hk4IYmgJzCZrV9SpxrA7wNArEdK5pQGegAZ5akwM0LL/x+h+aKWN74nOkEbVidVtAoRp0LIKaRmGqPEAadvEH1u4WX/1jycejFtwoAJZEqBNnwMs+Zf0/dxHQ0qDpFTohSEGM4CMzdyR+oDQwI3HfSwJkC40REGXACHIB4TnEdpfWZkkIzmqcSFkRCa3aR11cLRcgovIDM0RoEHtm2CcZ7t+CUyTbWS7BMaOdU/wPjZ+woh5Y3oJ/BAYq27zD6ME5jchQME2eHUX2BTPFukHLEVaGKD15grSZ6QypaR3dYL5/QANO4JkHFUgngDpKGqGHWD8Yr29AUryMsL2AUU+oCpCPPDAA3DRRRfB+eefz35G0vL+++/DM888AzfddJPubXBVNHCgej4TAU/aDz74INxyyy0wd66UAfHCCy/AgAED4O2334YzzzzT9r61tLRAV1MjdHcGkN6znxEpKSkq1Yl+z+DNA+isBqgpB/ANA6/Xy1Qo3W01YNtmpAPskBSwVvBJJbhVHwJMOlnZLj81AOnQCZ096Wy+VVljObR2BSDgzccH0H29srOlEziWOfxdHZCb2hO6L/50gM4A+LiTfFtbG/jx4K3dzf62258FOyvroKVFutAiuaQW+Gyvzn1ywG0JWd4e8He2Q3Vdg+5taH+V1y2QwR4f6qtDniNuSyvljo4O6O5Wnzg37qphjzUgO4M9F3ydEZ2dndDV1RVS6ivsqoAWCEBWzkBlhUDbVtc3sPvKBK9qv/F4wOMCLyKdnizo6mgF2LUOoHiU+okFApDZWAFMJ/T1Z/eJ922EjIwMSE2VPqa2tsWSXVsdFAdqYHd1veH7kd7WBOxUm+5jr9f6ndXseR08thi+21wLP27aA5+v2g4HjCyG9PR0SEuTTszodW9PyZcuOFU7AOSUZAJuh9uzbXt62KKjokZ6zXK8War9Ydt2NwO8fRn4AwFom3IuwOADQ97f/NQeCPR0KQQI30M8LrF9eEdFHYt1KM4IKPeNrxe+FtLLHYBBPmCPv35XNbRMVCdva7dtbQ1ViWobGqGiMxOKUgOQyamjZse66TlCA9vniOpy8HYFIIvz/+D+5qR0s+envN95Y9hnxbPyPYm2IbHJyGHbbt4tfRZK8rJVz1U6RwT9XUePL4Q3v90E7/ywCa4+ZFhIoCv/WVbOEVqUr5fOJ3hxD/TASSmLIct7ZOjzk88t4MljU7BIAaprbDZ93djnHl+L1hroqCuH7u9fYvezMPtg6OnshKJ0v3J7q3MEIT3ghypZAepoqIAUnXMEHidVdY3g7/ZDAUciUz09MLZ7Azt3BAongUez78o5QnU+aWLvB553cF8zoIv9HOwE2+7+OULetru7m70WRuA/9062pc+9Co27Ado6WIUkLbM/pI+YzczQPVUboH3naqiorWfPO8sjvQ4MO1ZBWk8A0mUDNH3upQdJk46ZxlroVxyADZ3tsKsWy2EOfZWBOKKjoyOQkpISeOutt1S/P+eccwInnXSS7m2effZZdpthw4YFhgwZwrZbtWqV8vdNmzbhsjXw448/qm43e/bswB/+8Afd+2xvbw80NDQoXzt27GD3YfR13HHHqW6fnZ1tuO2cOXNU2xYXFxtuu++++wYCu1cGArfnBQJ3DQ4ML8kz3DZnYFlg+I3vBRYsX8e2n9jfa7jt8OHDlcc/7P4vAukDxxhuW5ztCQT+WqZsj/tvtC0+b8TbP+5k+1I6ZZbp68Zj4qyjTLdtbm5mX2bb0FdlZaVyv5dddpnptlu2bFG2ve6660y3XfXPs5Rtb7/9dtNtv/vuO2Xbe08earrtF+dmS+9xR0vgkUceMd32vffeUx37Ztu+9tprgcDzc9l9n3DySabbPnvWEGkftn/LHsNsW9xHwhdffGG67b333qtsi6+J2ba333ZbIPDqOWw/Vt080XTbvP1PDex958fsfvE9NNsWjwECHhtm25577rnKtlbH22kTUwOBn99Wto/LOaLUGwi8/CtlW/xsG22L5wT2Hj8h3f/EiRPNzxErXpO2f+6EwPR99zXcFvePh+k5Ig0Cgf/9jt3v9ltHBfY/+HDT140/nwzd51DTbfH9CvxzP3bf5558mGvniJuuPI/dZ8N/zrY8R3z/43Llfm/+4632zxH33mu67SV4rcL34tED3D9HyHjttddMt8X7IkTlHPHMsYHvLvSZbnv7nPRA4Nsn2eZ4nTfb9sgzLmTb4TUcf8b/rRDXElh1dTVji6jO8MCf9+zR9yCMGzeOqUPvvPMOvPjii4wVzpo1C3bulGY30e2c3Oc999wD+fn5ytfQoXKYXTxA/h80gdL4Bx1Qa2zVrq3SL8h7ZAHLGVEIVIAcmB9JqrZrgEakym2+CQ2feaq2ITJtDL/F0pPGX+QKZNN2nlVoX3d7eEnQbgJnVq1+W2qLPeJPlpujTG47ODNaiGcJTNtsYRdcC7zdlG9XP50HXMo6m4Z6qyCjx7q1nkpgXXa69qhcWh00XEeKLkzNZgzLfB4YIistqAClOew4M8PunvxgCSwSI3oiY9Rh9rbTK4HpgBpUnMAjr2TigvLychg8eDAsXrwYZs6cqfz+hhtugIULFzL/jhVQ8pswYQKcddZZ8Oc//5nd14EHHsjuG03QhF/+8pdMAkXPkRYo7fHyXmNjIyNB5du3Qt5jU9jv7pv0Flx/8gHW8vY7VwBgDsXht7EPvuMS2Pt4+zcADvk/aN3nYgj8fTxAVxvAhZ8ADJisbPvQpxvgyW92wR0Ty+HczddBa+EECFwYzFXQK4HhxWP8rfNZCWzJTYeFzmXCcLz7RoMv3QPwf+WsPKLI29/9G+CTW+HDnv3gjWG3wtPn7adI4Y8v3AR//XAtnDS5GO45JbiPWvCy+WOfroF7PlgNJ+41CO49fWrItri/TN7PkS7QFUs/AN8bZ0gn88s5j5QNefvSF5fCgnVVcPtJE+H82eNMS2Br9zTCnidPh0NSfoKsUx4C737nq7Z9/YcdcNs7P8Oh4/vDv349XV/efuca6Pr23wAzrwA47I/qJ7bjO8h8aS6k9BsBcOUK9+XtBXcBfPUAPN15JNzRfhYsvP4QKNExg6bfVwZp0Alw1UrozimFGX/+EKqaOuG1Sw6AKUMK4LrXVsD7K3fDsZMHwiO/2V8tb//nVwDrPwQ45q8A08+1LIH9/eN18O8vt8A5M4fDzcdNkE/s2yHtmSMgHcMFD7sF/AddG5S3NcBT1D53fQ6dgRRYdP2hMKQwk237n2+2wt0frIUjJw6Ah8/a27CstXJrJZzwz69Yl+L3txyhMhZblcB21bXCEQ8sgvvTn4CTUpdA5nF3A8y6Ij4lsE9uA+/3T0HWIVcBHHkn+xXuL/oA9/rTR6wUyN5vXyr7HHv8HZCd5gE48Eq2PW77l/d+hheXbIeLZo+Aa44cpz5H1K8HeHIOI9Ftl/0Itc3tMPfRr6CysRPO2n8o3HbiJPslMBxq+/A05hfz3VEJ7931CzghsAh2jz0b8ubeq972/WsBlr8EMPtG8B3zR/h+ay2c/vg3MDQvFeZfeZDh68Y+96+dA7BmHnR0BwADlQOzb4Bpn01io0E+vWY2DJa7Pu2WwBD3P/lvuL3hNmjMGwuZV3wdco5YsaMOznzyWygtyITFtxwbPJ9UrIeuh/Zlx2nFxSthaEmhZQnswU/XwRMLt8DZBwyDPx4/Eb7fUgPnPPM9jBuQDZ+0SXaNrqvWQWdabtRLYBc89z0s3lQDUwbnwWu/m+VuCezLfwAsuhdg6pmQdsoj0jmifDn0PD4bWj3ZMK3pIej2pMLKPx0tLaQxbuLekZDm7YH069cyf6uqBIa4bzS7Zr15wOtwy4JmOH7aEHjsnBns+o1CRkNDA/MLJ6wHqLi4mB0QFRVy5ooM/NnI46MFvuh77703bNwoOcbpdngfPAHCn6dNm2Z4UNBJkIcvLSCRAXSnDyhVfehV2/G/LywBYLdpxT+Yb2tmgB52AGTnFQKMOwRg/XyA8sUAI2com40ZjPX6XdBVJ3WAZRcP1X08HtTmnJmZBYOK80O7mNB3g/V3nCuGK910X/DE7Gljz6uzOw/qOr2q50EeoMJcn/Xzk9EvPwe86ZnYcG7rNr7CAdJ7gbkPJtvrvZd7WgPsscaUFisnKwR+COliTRjYzwvZGQ3g83ogUDAkZNtubzq7r/zcXMP9Tu8/EtJxX9t3h+4r7j9+wOUQRDx+6cRhBVvbyq3wZRlN4PVnQos/NXQ/WfeWfJJMz4FOP0BNh5c9rwlDS8CXnQa/P3oyfLiuDj7ZUA/ljZ0wvJ+ckJ2SAr4i+RjHEDKT94Jt6/NBWyCV3Xf/wnxpX3DC86vXACD5GToD4MCr2ftidhyUFuWyNGccijqsXzbbdk8rsPsdPbif4W3xGB83tBhSMjKhLQDQFkjTj4CQt9XeT2d9N3sMT3YhZPo9KgXI7rHu2rb4eiGh4UzQ5JXrX5TP1F32fuflAwweD7DnJ5UBGretld/nYSVFoY/TGfQAZWVmwuCsLPjHrw+A3zz9Hby6vAqOmdYCh44PjW7gyZuC6j3SMVIwDAIpafBW10w4IXURlOycDymZD6lH9vibpG37DVApQK095seE9GLJoytSPYDvat2kX0D3gs1sbFTZwH66jStG53tCSm4JQANAanut7jmiLdDMXsOSonz1+aT6Z/a53+wfBmlZeab7Tvfb5clg91WYL51PBhb3sJ9rOlMlNbdpN6S17IK0wcHFlhmcnE9SU1MVMoSo75KOjbU1XeBJy4A0Tt3SbmsG+tyrgOdCfI8HjsYnL/1u4F7stc5tqYL9MrfDusypkJcrK9JVOwHS/FJMh6xqh5wj8PrY2ApleR7pNWs1CXA1QFxLYHgATJ8+HT77LKhcIMvDn3lFyAzINleuXKmQnREjRjASxN8nMkJUk+zep7ZVuD2QBkW5NssVkYQh1u+QZqRgOYtyUEZRu6Ba3aGuFw+NbHCYAq3bwo2/M+oEk9vgG8AXki8TTheY7awPvUGtDkRLXNUHQxCt30Pswhggt8F3Zg80lFlNW/4pC0gvw4MmwbvdAaYhQIO80vunmwVEc8AQ6TlKK3lBdpqiCk4szYNDxvVnqsKTi4LdPOGEIQa7wOTXbPHDANsXS+W3U56wnF/Hj22gMQ52MoAImD1UKocpOu0Eo33vTsuJaQ6QLnTGYOhmASH4FmyKZuCiBHQ7pOh97elUugQPHtMfzj9Quv31b/wENWbZUjxq5W6oopHQ3uWHhd2ToCaQCymY67JloeEYDMcZYXzH4ODpUJ4idcJiZptl164BUpEAsXlgdbrnGt3MGkS5NAB1pX+E0i1qhWaDLjA87gJ2MsVcRLXc2YYZYMu3u5xArZNIzmYnyte32d6foF+OQQeY3rWKH4iaFv5E+Li3wWML/FNPPQXPP/88rFmzBi699FImAVNX2DnnnAM333yzsv2dd94JH3/8MWzevJm1zZ999tmsDf7CCy9kf8cL+1VXXQV/+ctfYN68eYwc4X2UlpbCyScHO6lsQT4JNNmZA+YGASL1Z9DU4IwmykvAv3EXLso98RkkFpsRINORHkZp0HKuUX0gh3kx+HEJwTlg9lYeEbXB46R1mmNlA7ivGJKFnyGUrK3g83RCkUd63xvT+hsHl8mpr7pQ0qC3m7TAu5wCTZCJcH+oM/Z80euHwy9T02Frtf409d/NkTrYXl+6U31yCZcAIbnavQLg87ukPxz7t2BmjQX0WuGtUqDdmAlWL2fm9KQZj4mJGXTGYFi2wtsNQUSgJy01K+S9vfGY8TB2QA5TkG/630p74YjUAl80gr3/3ZAKH/gPUIUVWrXBYxnL0vNFYYiIKadzk+6djcDgkZkvEaAUPNfo5LkZDu6UJ8CvDIxUJcbbaYPnk6CJhHTnDY1ZFpDfH1CyjfhBvK5BJ5GcQW6Hn+NdoX49lSnwYyyvVf1S28JOg447ATrjjDPg/vvvZ8GFWKJavnw5zJ8/XzExb9++nWX9EOrq6ljbPPp+jjvuOKbuoO9n4sSJKg/R73//e7j44othv/32g+bmZnaf2sBES8gXipZAFvTPtQhBdIMA7aDyF6dU9RsFUDhCSsjd8qVqxYfBWwPksQcRp0DrKS06ClCTx6fKweBLYOEoQLaDENOyg0ZvB6twGoI6IDfTOIWYg0fOVGoNZEC9P/TCqgQhmipA8gUH03i1ZI1CEN1OgdaEIRb68QIWUMqeZhlApIrQ2AjCjBFFbBAntps/97Vsto+EAGWmAPzvEulYnnAiwLRf235aNA6DFCD0vVC+k5UCFEkWUH2bdJwHMiObRecK6JySbUyAlPebRmIgMHVXfs2IIBmGBOq8t5lpKfDgGXuz+WSfrK6A136Q81xsEaCRymf8s9TZ0u8wrBB9jcrzUhM7nIpOi37rcRjy/mI21aRTlHEpA7Uhjw6Qn5sDTQH59i01tsZgMKUoEgVIzhXLSkuBdLnBpc03JGZp0HWtnUztJfywzdmwY1P0dEtjUTRknGHUoRAAD0zyboMRGU3WM8B0CBCNaMKFLs0cTBoChLjiiiuYioMmKyxVYRo0YcGCBSz9mfCPf/xD2Ra7ujAzCD1APFAFQqUI/45mrE8//RTGjjV5IY3QGRyDEVMFaFjw+TNoQqPoOeJJXUkt1gztdByCqFWAtCRDXgkFZNmRVxaCCpC9TjS2u05HYeAZ0WRYqxGUFa8N9UfaIYkA7QkUQqPOh6lVmd1j8lwxDFPuJAlZvUVrErymBJYa6DJOg9akQJMqolWA8Bi7VFaB/vPNtiBZDZMA9e+plNKeUXk64SFjaVsHA+WwM1rhl9e3Q7c/wMocdhJ/+Zlg4ShAHpM5efEOQtRVgNAzgvuM/2NAprwAwoscjgZRlRsMOsF4YEn0uqMk0/Qd765WhtDaIkDy+781a5JExnAMy/qPQge8yo+N87uQBNkqkePzw+Np8i/YsU9Bj7oKVzjzwHTGYRDJVIX21W1l50hUutYHhtpWgLQldfzMkTrelFkaMwWoRhNuu2xbnRSy6wZwUgGqafg+5WhsBb5iqMgZz77dr0cikJYhiAQ5dDi9u0lZUFc6TINOCAKUqOhoaVAGoVpOgo+UAKHCgm3BiKGyVKxHgDiJD0/qgxQCFOEgVIJyotdIv/Lz8WbLBKg5WIpoiqAEhuTJcO6U4b41Oq5rm6pePOS5ansCRbrlOSqBZVsNfS0cpn/yao4yAcL0WfkCaZgGrZkDZqQAIY6YMABGl+Sw9/ilb7eHNQ+sQSYRhd1VwWOVVu42oR2Iuq1W2ufhRdm2Bl6GqwAReUuRj/u4KUBoHKfJ4DoKEM0pVN5vPA9dtRLg/A+VbYg8op/KMLLChNxeePBIpgriRfvq15YbXyDxHMV5gOg1zMvOkIgKYuXrwUUmzT3kiJ3tNOjCMoAbtgCc/Bj7UVGAIiBAbBwG0DiMKnsKkFz+2pUxEjohDVpstmRrS2C8V66OxmHEwANULR83I4t97LXH/V+7xzqywBZIwULyy5nGCWt8+7P/J7d9Hzx+HChALA06N7w0aEGATNDSLJ3sWiHL3POhS4Acmsh24psfkKZg52ryZ8oOkmbL4IHExcuPKkiBAk9LWCZoQ5ByYVACS5NPvioFSF6l8R9iK9AJTrq903EY9i9CVKozXPEaEKDdUKScuHVHYVipXVQG0568oq0AcSqQIQHSKEBBL01oKQnJxSWzpcnsT3+1RfJkKCpBjS1vARHk3K4q2+VaLeiCRiv8oGplrzmBtnPuAZKOnzRfYXAGWjzAjvmAYQ5QiAJEFwhuHEOQAJl8FkwIEJKmB86Yxj67P26vh0e/MMjeQWJMr1NhmaIcMtV3yunS7zd8Ip1TiESnZqpysaicbkshxuM4JU11fIQzB8zuRHhdD5Bc/irPklSyVpulGFLPs7nzCfmAatK4eWB6Sdsuolp+TngcTR8uHV8/bHWpDKYzkJfH0jSpw62s4VuJ6GOjCB4/WNbE66EVAWqrV5oknA48FgTIBG2yAtSd6tPvmtIDnZywhGRzWKQqAJH3//Af8OEzQ8pg430SQ2/3ZAYPhog9QOYm6Iy8UAJEpIAnNVbAIEesdzvyAYVRAiO5GueAOSFAFagA6exX0ASdao8Aaev30fYAcQSoBOr1u8DIl5SewwhNuVwmNCITc6cNZiUFfM/f+nFX8CLZ1aL2cugAL2AkWgYN+84JEJU0Kps6mPKwTS7B6JE2PQyTOwCR1BKpsQMiwelEgOKlABFRwC5N+WJv2gWmA1JHBslqmi4sypuDC7Lgz3OlrK+HP98Ay/WGpdIiDZW+tCxFSWWzx7A7DSfW4yTwte9xHWBqUhfsBHNwDnVLAcKJ8CbzwJQ5YPw5pfxH9l9ljpRzFZkCJJM5wKG3Xum1ovNGlBWg4pwM2K9MOsd/v80lIzSp4AaBnEu7R0FjIBsyuxokIknlL9xeLt/qgpsHRgRIlMBcRHuzRDD8afYzPFRExMnJksv/0YWOD6gsXbr/Suhny09hrwSmo7LglGU5OdiXX2ziAXIWK0WESU9pMfcnOVCA5M4GKhHYqlfjiZSVwPQUIHXbqnUnGEeAMNyLXtdoKkBynd24BEYmaB/srGtlBAXfO5WkzwF9NhccJHVrPbFwE/RgKBumN9sog9F7i2Q3taXCtlqpBb5/qEBguRTLmqTk6JXt9IAlS1I+nKhA5AHKyqWTbWPUV+Pm/h95P+woQBqQOkIXC13Y8HfNnVYKJ04tZe/F1a8uD/W7cP4fhFICQ1KD56kpXBnMwNdkuwSmwR4XCFBhdrpSAutsrDRUgIrJA4QfIOxuxL8VTHSkAAUV5VACVI9vZd6QmJTBapTzZDrsyylAruQkG3WAyahu7YGv/JOD1zfF/2Ph29UpgTmdCC8IkAm62+SLFWXj2AEmcCnSnE0GjRfGXUuNFSCeAGEnGBISXI15pfvf2VNgaVjDA5nUEDpYbJugFT+QB/LyZQVIvi8scWizLOxCMfvZPckZledMUN1EJbB0RyboikChRQnMSgHSyfAgQyV2s9HqJZoKkKeOvbYhrcQUp5CRy7XAB5Ny9XDW/sPYiRnJwydrKoMXLIsymGoSvEwu7fjVtEDyQ8ctdoKRl8euAhSuD4j235dH7daBIIE0An7u/zUL4IMbIBYt8DwB0n2/QxQgMwJk/b7icfKXuZPZ/WypboH7P5IvWDot8AhaSNCFHSafJv2/ZRFA5Vr142oUINvqsKwW0bkokhIYEv6WVOnz2aUhQG2dPazbSKUAyQZoNPm25o+1rQBhdyW2+iPI9K3NAjLNFHMRNZxVYOrQAtbxh2Rip9xF64oCZFACQ0K50D+VI0Ab7I3A4PyqlHYvSmAuoqddulB4Mh3OS3JqhMbVAyosuPrqN1p/G8z1wJVzd5sUIocfFNlTgWoFndyMgCcGDCSzVEP0ykzkZ8rMh/552aqVJpWEnJbAEHlOW+HDMUE7VoBkD1Cgn64Jmla7lp4wvRIYH4KoYwZ0DbLCMtBbr68KcG3wdsMEkfCdsJd0vyt21geVAlrBW7SRSwSoPOwSGL+qL69vg20OWuAJpBYR6XOiALGEWuxisUPAN30BUPkzwNLnnJXBwwxBZPuXmaoE/xmpQBQhYKqO2DS4Y6bTXfLYm9eX7oCO7h5DBUjxABEBQmI0ZD+AgB/gh2cMSmDOFSBSuPC2ThdjWnRlSK+zv7laVynB11o5BzD/JkprkyEjUyov2ukC47fR8wAxAqSnJEcB1YpVIIPFHkweLJ1rcSxJxKBFIBfIScAFNLbgL+rZS/rFrh8Adn5nTwHK4ktgsgIqFCD34O+QLg6pWQ4UoHAIEPl/sPvLaBWOv9ekQnubgy3bdCEzAp0UczNSIcvs4q2XBE0KUFZBiNROKy5src1wmLzqKPE1TBN0sLadbi+vorki2AXWbqwAmeYAIWjlhvtKBFIJQYxi+Qshm+gHpxikQXMmaEqBtmMmHiLPVapAsm2zFV6tAO2OjADJq7wVO+rZ6hmPOTvhlpEoQAqBy043TknXQu4IYt6NKlnhiLIChKqMlQ/IVnnIQcTBIWNL2HuCn1+ctaegLtgBhlA8QPwCiczQNRsMFCDnBGhPQ0fELfCEnizpdfBoXge+A0xRTDn/JhEvOzlAdO5EMkXDrXmi2ICvm1EzhcuoVhQg6TxJPqAfIvUBdXcoqrpeCay+rYtFM+yGfhDoP14ixVQNcVQCEwqQ6/DIK+W0bGuDcWQEyML/QxitGYvBqRVWvgZb/h8jlYUu4FmFIQRIMfFlYniZs2nIwTTo6Jig8SLZKJ9AbSlASH4CfvB7UqEa8kJKYEaStS7QuE4XE5KAFQN0tAmQpNSUeOwoQPaVFLqwMLXRIC/GOATRGzwRRqgALdlco4w2SeUuHFag52i1WCBgKYlUUxwTYpiRpYXcERTyfZRCEO34gLAErihAEXqA+A7BE6dKx9q8FbK6Z+YBIgUIMekUyeBL0BC7YE6YfQUN58TxkQkRQU5qT2mvsR6Dwc9vlBeXdhQgIkla76TiAUKzvlIC2x4zBQjB+4AiQsNOqWyMQbY66feUPo3P2UM2D4JdAsS6wMgD1O7ItyQIkAlSsMsFX2dfFAkQvllmHWA8Rh4inTQwTA4PLC6zhrpijECrQss8o0wTBSgzqABhjRs/5LRCc2qAjqgEZjMJmuRqVArohGoK+fXszCqBAHhD9gvr/wRTFc2oDBaLFnjOA1Tkx5NXwJQABb002c7mcTlUgAanNUthaOh/ktOqnYII2MpdDY5a4AnDHYYhKhlAGMyHx7cdBZIZYjnSw38fpRBEOwSorrWLEXj7JuhaWzP3sEMQ8enqCknRYK3tNcGMHr0SGHVBjpjDPa4bChARvPDHYBBS5C7NzE7166B0gBEBwnN85Wrp+2EHKN2hdjxAQe+k+lxSgGojLQxjVAKrkZ8XKeXUCr++otlR12QI0B+FQCKns0BWlCd8PWmBT9dQq6wwuh70dECJzHlxweIkDVoQIBOkdUsnSl9uuATIRhYQGr7w5IY5GDgDzAx4khi8b1AFUghQoX0FyEoJMfMAZRWwuje1r6PBONwOsLBKYHZLEDonKzthedAkvZ7dOdKqVusBapZXdRhVb2vQonb1Fu1BqASZYKRBFxRAc+gFUS6BdadhF1ibariu3XlcAYcEaEhKXXDfsFEgDNCFm3Iznfh/eAKEq3g7ygL5fwpwdapKIjch4Fj+4Y9PuT06YmjSkp0SIFJH8AJneuzS/bM5WNafs0mleTCyvw86uv3w8c97guUvXwkz2SNUOUA8qAxm1gXWYV8BCnqcIleAMvKlz2hKoFu14CLFQumY3CH7f4pGMVJHXh47XWBKR6lGTVaboGUChAtezMiJAlo6uhVjNylAaIbG9xWxNJIymN4QVKNMpWGzgrPorNQfCnKVVcSsnmblmKlyUAYTBMgE6QFpdezLKwiPABH7NQOpP0hsUm34VEgmXD+f86v0s/Q1OC6Bodkau9M0ChDzGtCJtrk9OAcsHAVITjx1XgJrDEvWtYRMKANyCUlbAqOTmmUIIqFQU7+PlQeIS4PGMliIJ0RWgGq70lkrc2aa17wzUFOCwpNle1qBLQJE7+1ABzPrjKDNr3GqACHhphWuHRWIVr5siKvdEiyVvOg93rPKHSO0HQXIxANkuz0cjx15RpydMhieD06aKr2n7ywvDyl/8UngShcYYcIJACkZ+gqQnCofngIUuQcoLzcPWgLyvnFZQMESmPw3jXrvk8kMjbgwA5XJjEpg7PyDai6G4Pq7g00ELqNGXijieYBKeIj9hhdFPhjVogNMVVLEzJ8RB9vrAENgI4myKA6GIVY32lesBAEyQVZA+kBR67dtYHIz4qdXAbZ+Zb7tjm/1538ZgWTCDR+z8kbAmwY1kMu6YtBRHzEB4lv+aeWjhJUVhKw0lTEYDjvAYmGC1hr7LCG3aafkS7I+qgT8a6qktlr5f0JKYNvVJbBohiASZBKnmwUkK0C721IUJcWOfwu7Q5gXBjkdjQqwqQAVB2psz6wzgvbC5pQA8YGItghQW1ABsq1AUslr/PFSbINbRuhW8gCFpkDbUYBs+X8INv1dBCJAX22shtY9G1QEiE8CpwWPAiSUs6+TlG9N+T+cEpitNv8wwhD5Y7xWe07R+DdpccR3xxqh2SBSgwgQ+hcDqHAUDI1qGaxKJsw4AoQ/D+xb5oIPqM48Ayjk9Zz1e+nYmfore/evNw6DG9NkBUGATJANYRIg9Ors/RvJ/PXW78xPmHb9P4TSvSWFCVcEiNyBkJqSwur7dJILOwUageUJeUaUst9KG7xMgLi5QxEpQGG3wdstgdl8zgS5SymtUCJAyH34Exmt6mw/1xAPUIxKYFwnmC4BkmeB7WxNVZECO6ALaHVPjiMCVNRTHXYGEKFE4+1wkgEUjhE6RLmwE8RJChB+Tgft5V4ZLEIPkKOAQIfDbkf2z4G9huQzNbF8888qAoRlY7LQ6Prw5twAcMmikIDHcJKglTEYbhAgXwZbWGoVINUcMOxwUvLbDlAtjmhoshlaDBRlOt7w9WSLrih3gtUY+EOpE+ynnQ2G2VKRl8BosKxMgEbMBvjDjwBlB9q7f1UrfDAt3i4EATJBtkc62FMy5Q+CExzzV4DCEQANOwA+uF5/m6YKWTL2SLkYdoAEZdRhyo+evMFKe7LZSd22AqSntHBt8Iji3HTlPulD7DQDSNUF5pQA8eU5GyUw+wqQJDGnFQ5RfBJ8GYyeK5/ZYbsEhlcBpQQW2g0RtU4wHIdhoABta/bY9v8Q6OKyu8vnqAssr6sy4hIYKlDkvUBL15BC514PJ63w1AJPplQ+et/SAI0ECL/c6gSL0AO0x84YjDAJEK8CdVVtUoUgEonEiAx8/+yCzifUxWkFzCGicoobJTC8IAcVIL0SWLr0vqLCx+W3+WQChN2iZDq3NEFrFGUsRaHPMDQMMTqdYDVKsnV6iMKK9gF8LqvkxoNolcCQcIYFrhOMFkhVcvitHQgCZAeymc/ZbXIATn1SMmlhKWzVm6Hb7JDlU5yPYxBxrwu+XTBvkK3uFmcEKN9CAcpUVCWjD7ETBcixCdpmJ1iws8Hmh0s2QaNKQatV3ghtew4YAacfI7CbEMmP0gUWixJYMA0aiaCqNVSeBbal0eO4lETlhV2dWcGLpEm3kJKk3CEToNzwCRCCVnmlBVmQkercTF1WbH8oan2IAkQLg0ZzAzQGJuK8q9Jp7nSC4bw1JP0Gg1AJpHSGvN9cCcy0AywCAoSjMbB60q9zl3kIok3Q5w9JhCpk0QA0AwqJFpVpIy6BgfR+B/QUIFxU8eq9XDriu0P5rlE9GI3VwTJUMAso+p1g1dwcMO1+UDt8WD4gPM/QOc+oBMa/nuGAT4OWs4CECdpFdEOqaqKyIwzdH2C2rP68dzVAg3xycJr/owWnAOHF2krWRymVmLYjAkQkQ6MAueUBCpIMmwqQXnnOTm3bDgHCCwaZDHMHBQ3anDplexI8AU198lwu2LMiWLaMhQLEzQPDDh2lNRQNubhqRR99fcBxN9XAPIn4bG2VL6SYYN7VakkiMtr2RKwA8QTMaQdYeAqQ7AGya4ImpQcXNNjQMGiaO0ZoUn9w/prJWB66gKne73D8MWEQICRWc4b7lOyp4BgMnRBEG+DPJ3YWSPwQVKd5ZMYT4eV5YA2VOl1LGZx/M3j+RuWY1BsrH5DeIFRCvnz+UXWCRasE1kIKUErINSoiH1D9Dul/9MIZEHdVF1g4UA1EtZ6Hp4UgQBbo8Do3WqqABGjwdOmk+fbv1IMUnfp/+NX9gCny90EFaLvBqhajxpEE4XnB1oGmNXtqFSCOAEXWBRY0+1nNMgvHCK3NtjAFnux7ZOk0d5C6E8OibdUUtHrbuTR4EQ2XUIehAA3yNqhPCjQHDH308qLOiQI0MF/a921NnmAHj8GFEo856eIVgDQahBqBCVp6fOkCPiwMAzQ/DgPnHFn5S6h8Y9sETV4fKn2hCkJG6Mo1ELn/p9B06DGqD5j0rncRYOndthUge3PetDhjtPR6NXhylQueKgncATB7iUZN2CNAba6VvxCoLjanSM+hs1E6dtEHQ4p3UXYqt4BVn7+VVngrAiQrRHpjOxQjNE+AolQCq5IXiofUvArwj4kAa95V/sYnQps12eiCFKtCffWHb1QJnwAFFyV0bBsloetBECALdKVGSIBS0gBOfUpKwsThf0v+FfRh7P5J+n6ozQ4wHoffKgWJTTmNU4BaTb0wRdnpqsh12+3migJUGEqAIvAA4YoVV9d4oVy+w0ZmkmrfGtxtgyf1B8tTqem66pTZCcsQJP3ijJtYGaDN5oHJLfCBlAxo7ZFWq7Z8ITIoY6UC789CKSCCkQ8t4KESToQlsF9MH8Jk+V/uK5cXHQL9PEOLpOfw7eZahx4giyBOKnWR8oNkpXRq5GUwpQvTuhlDzweEn1FShJyZoJ2t+mcXS8fW5p4BsG5PU0QlMKdGaDJAu9EBRujIKFTNAyO1AgeF5jVvkfPbsgAGymZ3GT4KQ7QwQhuZoPljjimotIjCLlUb3sdwTdAj6r7mOowlTCzNY7lvSGQ3VlkMATbsANP3/9AcsMg8QAVcCUzuAhMKkHvoTnM4CFUP/UYBHH239P1ndwBU/Cx1D2DYWN6QYJujE4w9GuDceWylH/QAtejGgDvy/2hJBk6exzKHXgmsmVeAnJ/gcJV38BiJECxcX+Vs3yw8QPjhclRfVgZ1DgpRp7Q5QLZN0PyHf+cPsfP/cF1g/QJ16jRoCkFMlUgzkgF8H+xCPQ7DnADR6r8sTSa3uD2WBSPAPsMK4Y1LZ8G0oQ6zuTjMGWvvmFM8QHZKYMwAvUL6nrw/PBmKxAhtwwBNKNYhQGSAxkWKLaU2jBIYwtcsXfC2BUpg3opdqgWErSR2DZy0wlMJbICLBKgnU/060PmkMDsdPOTfHBKa30ZZOlYlMDP/pEqBxkUTCwjEMj2OlnAX1UyFCUB+kxxhUCEnWzOy54W9h0mftR+c+oAsOsCQHOPiF1HoC9O3xXWBkQeoQx5fYweCAFmBQsEixfTzAMYeI5VZ3rwIYPOC8Pw/OsAuMLyGYZu2nvznnABxUj+pP2jmlv03VFLq6gnArvq2sD1ATi5GTtOg8cPVLX+4bK0uOAN0SA0+XBM0glZvVMaIhf/HLA1aVoDavVlheWlIZsbXpYcUCQOlgF67kRmNrqg/bmHO2BJHBKjAjglaa4AmEBmKpBXeRgu8mQLkOCAwTAJEIYjbAgPZbDBcjDWGWQJzSoAUBcilEhjCI39WU+V5YKoOMCp/6aj3NCjZqhXeyAQdQoBQSSQlOQo+oJrmDtYtmtYpn1Mxt4qzauxLZTCnPiClBGbeAYZl23AaGrSLEiwBO/WaCQJkAU84HWC6d+QBOOkRic1X/gyw+GHXCBAa7wbLLcF6nWC2x2DoqSyK/ydfSt6U6+P0AVUIkBNVhMPsMcXKfCeSYm3tmwUBovIXfiBsja3gDNDS7XRKYAbBZabQdj/EqgSGPiP5QsaygJrVBKgNMsPK0sHXk1a4bWn5thSg4aQARWiAdgszR/VjZYztta2w1WSGHu1/SAkMPT2ojPIggjNgsloRID8Qqr7hGqEVBci4A8wsDTo4JDQ2BKjcOwh21LbBjzvqFQU1JATR5RJY0ATtwiBUGSm50rkpo7OOKXyUWcNK6ib+TfIuWZugjXPFVF1giCh1gnX1+NmcuPFezl+E54iG4M9KJ9i2WndDEIlQhtsBpmmDR5Q4JMCCAFnAm2XcdeEYOAUcSRCCOoKcGqANoPiAdE7ojhUgXmUh/wHVWmVo7yucEhgdsBMH5bEKAibJWsKqFVljrrMc/hpSAis1zCgiUyOd4GxBK//GIgVaeSxqha8PKYE1+okAOfO4YYcNKQlNXnsEaLC3LqEIEF5w9pVj/o1UILwwUIlCUYCYAurRJ+BKACJX/kJgFlhmhEboCD1Ajv0xRIDwcZ3Mn6qV5oANGjGR/T9veXnMSmCOgh5tIj1PUlFT/R2spZuaKsoymuQxRx6AoaH5bUoYokUbvNEwVERIE0aUsoDqZBIy3it3bBG4MhiWwLDCgKSWXmdboH01KIGFDJYNB5psLuoEswtBgCyQ7iYBQow7BmD6+UGiUcLJ5RHALAtISYF27AFqDGmBJ2jVpHBLYIjZVAZbV+W6AlTsc0qAqAQWqgApozCcKED5Q5SBfTEtgXGdYKo0aFkBqu/JCHucBF1k6i3GYdDJe6An8jlgbkM55gwIEP++KwZefvaQ1oOmNUDzyu+gCI3QDjxAegRIUUfsro6VluWAvYHOlFUk+1P23Wc6+/+9n8qVMkd4JTB7o3LQR0LGVzdN0Hm5+dAekPe7tVpRLPbyrwmqfXQ+4qCMw7AYiGo0C0yXACGRRix/CWCrbFZ2AdUyCdkrTRPRglUK7n2YMEg67n+wqwLx9gmrDKBwDdA614MBsg/ILgQBskCGz2UChDj6LokEHXtv2JOxtRheZJwFFJEJWtMCb6wAhU+AyAe0aEOVdaulTRO00gIvp1Y7NkHrBCEGR2GkOOsC5Mc/xMoErUqDrgtRgKq70sLO0yECVN3js0WA+kNNwhEgOua+2VSjG/NPGUBY8lOZxPUIOMqX5SvUJS8eSiL0j/H1ANktD+ExS8/TbhmMyh0ZeTBj0lgozE5jF9clm2si6AJLtVUCw8UOkiB8n2yHntpAUQ6Ow5DP/y01ygV7bMfPpvYFuwoQlcD0FlQhC7CpZ0qxCk27AZ47HuCzO10ZslstLxQVBWjI/iEKkKod3q4Rmo4HVBMxFFgHVFKkdPewwH8eAwHoLxQgd5GaFcrwI0a6D+DEBwGmneXaXZoqQOF6gHgWnxU9AjR9eCErK+EJc/XuRldM0MoYDLurCzyxIGSyoheE6HgYKoGXgGPlAeI6wVQT4eU5YI09meyCQd4xJyAlYY/FOIyQOWAyIUsETBiUy45hnGyvd1JXDNDk/zHLoULvC84Hw1wkPUU30k4wen1NUqDNPEDKIFQ5wykqPiBlCvwISEtNgeP3GqSEMoZdApPPKVYKEBE8bIN20tFoBfSm1HDjMEjNGtq8wpQA2fEAYcI1jphA5Fh1gbE7LQa45EuAvc+WlLkv/w7w9FEANfLokTBR09IBKdADw3pkAjTldOn/ytX6gYh2FSCL8pf02C54gOi6hB3Vnc1CAXIdBuw10UDznLbqtMLTydC2H4Yf+mhDAcKciEhOPGhSnjW62F43mO0SmIMWeCz1kaIkX6T1ghCpq8Mx2eO7IGLpAeImwqPBnLWcymMwWiCTzdKylQulAZUZdnbQOAz9k6Li/+iqingQqttALxOvPGrRoGQApVkff7u5BGhUT7QgXxAaocPJcWmzXwKjLBTl/VZ1gWVFjwBhFxw3AmPuNPV7HVEXWEeX7RRoN9GPnwfWUsUUIByQXdi0ztS/SYqO2SgMvjxmywNE16K5jwKc/rx0Pi5fBvD4wQDL/mM6jsYM1U2dUObZA+nQJWXVjTtW/sMGadirDPLMrS5vVBaC9lrgh1mq9BEpQKmZUucltcILBShB2+CjDJrojasldPUTcI4OrWZtK0CKytLIGTCNPUCR+H8ct8PbNkE7CEEk9QdTe2XCqx+ESAqQw7IlfxKIkwcIr4VMwpdLYEiAwpmmzpdStrVz88B0gMddFrRDZndTwpXAVMecjvcsZA6YmQJpZIDWM0JXrYmqCRoNpWg7ovebHxLqyB8TtgIkEaDpwwphcEGQcEXWBWalALmbAq0ahyH73HAeGJLKad6N4EW1Aef85Q82V4BM2uCJRODsslSdRQhPgEJsAZNOBrj0a4Cyg6U5g/OuAHj9XMfBlYjqlg4Y55HVn/7jJc8iHqv4HKvXS7+XySUumHBXftxeZ78EZtAC78oYDAQe7FwnmK2kcw6CAFnBrTb4KAMnLdMJjp9zRCwb235tr8IUY18AoGGnrvzOK0AkVbtxMVq2rc58OrzVRG4Z1FJvawyGpgOMfSu/Vpj+jGM6UFUzy+0wBcnAuFIxmeUUrS6wgfw4DNkE3RLIUsZCOAVdaDY2c6MwdFagePIe6KkLLiSIvCYIDhpdzLpb1lU0Ka3i1iUwHQ+adgSGFswIHWYZDPNYiADZUIDwYkorany/aUhoutMhoRESIK/XAydMDZY8I+kCs5oIv0d+ju4rQBmKAtTZWMmI5H6edZbxJUoOkEkJLOgn1D+X0HuFhKNZ736QqJzzDsDht0sz4la/A/D4QcF8IgcK0DivfI4fMFE6VksmST9ruhbJB2RrMKqTElgkBEg7DkOUwPomATLyAZH/B5UQPCnZAqb10pwnkjJNSmBuKEBDi7JhZLGPhRcu3lgTcQlMGfDnZAwGN6eKD9TCFSh6GWgh5pgAyRcFVpJyYVCjUwWoP8hp0EgK5VlgzREpQNJJZlOLfOLyd6lmjKkJUOJ1gBEKfemw1xDpuF6kUR6VQajaRYP2+GMJ0D/pd4DxCHcyPJahA37bChB/zOP7zQ9BdTQklMgWld8cEiDE3KmDFfIVzqgcuzlA0VKAMFivUY566GioZOeBfb3WBCjoAbJWgIxS5XFBS/llNJMuBNhAc/A1ABd8AlA0ShqV8epv1PMmbXiAxpECRMSHfGxYstXxAX22pkJ34oCTFGi1CTpC4zq3KBYlsD5aAkPoTYV33AFGoNU6SZmaEhhPLCIxQDtpTWbg25BNPujVTQ4mwSsp0KWqlTSdyPBCztfs0fPkCEP2A5hzE8Bx90FMoaRBd0MhNGkUoMywFSBUGFBRbAtkgJ9F9OsrBYwAQeISILPSa0OrkQdIU4K1MkATwlWAqKyB5yHNyAU7nWBkgHZaGlDIlp2yCvqaaMVP7dryHKm/njoF/n76VN0yj1s5QEGTt7sECNGZIb0O7Q2VzCy8j3eDZX6b0gVm4pWxM1hZ1wekh8H7AFyyCCDNB9BSKSU520RNcyeM88jvHR2/qATpGKGPmTQQMtO88HN5IyzeZLJIRXKkHA/6BAgJlCtBiKpFST0jjkdNtO+zFASol5igEbSiVylAlAHktD2UDiq5a0irAKFsSYKSY0XEAHPGyabU9VXGKwy+PEf7pgGaD2n15awEpq7p82GIVM8Py/CN+TGH3izNb4sl8IIplzKwEwx9UQHFA5QVtgKESiLN3enKML5Q4ol7EClACTIGw+iY+2pDNSt1ahWgfCsFiBSdgZP1DdAhidCrnBmhHfh/CPRZx/eb1BHH+ThOSmANOySVCsmwrDoSztx/GJw4Nbz3Ps+2AkQql3sp0AR/pvS6B5qrYIJnG/g8HZJXkB93YpQDZMMEbbZ41MsiM71O4VwyBKVU20BzUwMM91QGTfy8EqRphcfF5BnyEOLHFph0n+G5QF5oMa+UDnA4L45SYvfrYgkM8cAZBqVoHQgCZIVYejYiBK3oeQWoOlwFSPu8NQoQkgBSV9zwACEOGNGPyb44XmOT0eRhvjxnYIQmAzTely11SjMGg8BnASlzwFx6rvHoBENFoKddIo2tkKlMRQ8HdEFtNxiHgR1IuHJP5BIYYuqQAnahQZ/Jip311h4grQma/D9m5S9EYZm0iMBZgE6M0A7GYOgqQA1h+mOcECC+/OViiZcUoPYuP0vm1gMulBwHPTpAgOaBddTCfkr5a4YyFsg8B6jbRgq0CwoQgVQpmz6gQCAARa1bwOsJQE9Wv2CHKilBGGypCcK88OCR7NyPqf0rdxrYEOq3Bj2IBsOPa2VvKqrsqNpEBG4gqlMIAtSLSmCmCpDjEpgm/0ijALH7lAmQGx4gqrnPGEEjCkzGYuhlsej4f3D/bPkeDBQg/gQUNEC7E1wZ6zIYjcMgApSVkx/+AEJu6rbROAxatQcJUOJkAPHAk/nB8jw6vhvM0gNEJmirDjC9RGgnZTAHIYj6JbAw/TFhEaBg+csN8OcVozIYfjYpa8ip/8MOvDIpyO6qh+ne9bbmNwaToN1RgOwToBmOCFBjezeMDGxTqz9EKPKG6Bqh0at5kqzoPb7QQAWyKH+5lgFkMA/MCQQB6kUlsGGyAoS1VfrQhO8ByjdVgPj7dMsDZLsd3sIIHfT/2PhwYakNzYM6KgUfhkhyts9pCGK8oU2Dlktg+QX2FQU90NRto3EYdPyVKnPAEicDyM4xZ+wB4o499KCRAdqoAyzSRGgHYzD0CBBvgo6JAuQiMKOK/HZGZbDy+naljBKxkqCD9HyJAGGcwyyvbAoeakGAbChAdD4xi9RwSoDm1QyGAI7dwUGmDZrRFgadsuNlA3QKT4BUPiC1ERpxyRzpff5g1W7YojdM2GIIKj02oihSA7SDxhg9CAJkggC+PBgOlSRAIkLm5O2yCuQ4BZrAtyzjh4oNglQDcyEQbsbP08Xo2836IwoYjOYxcZ0NtmrLLTUAr/xaOsljKym2lnLgs4Bak1UB4ueBNXdASrd0wupXJF/gwoQyDsNvToASvQTGm+9/2tWgGDONPUCcCRrD/8gAjRkqVginE0xRgByUwLgusIpwp6QTAcKLitXIhSgRICsj9KpdDXDFy8vCnmlnBzm5BdARkPahyNMM3Z5UyXRsoWRTq7vRaB87kRpOCNDmqmb4w/82wpqArLrssFaBqnkDNBEeQslEXR8QYvzAPDhsfAlbOz65SH7vHXeAuRCC6DAaRQ+CAFmNrIhl23IUfECulMDwe52a9xWHjYZbjp8Ap+2rJg6RYHRJDpTmZzJZ+7stNeEpQDQHzIyYbfwM4LGZAOvel/J5jrs/ROXK405AYY/BSBAChCWwusZmSA1IJ9MBxcWuEKA93dmGBAi7z4qgIaFN0NQhNX5gLjuhfynPo6OLTn6IAsSdbEnJsTJAEwaFkQitjMFwrgAh+amQF0COS2Dss+BRG7EtpsBHkwDx2WD4/jy5aBOc8q+vYXNVC5sAftuJGgXDxXlgtTQPDAWRnAkAaeZk0sedI3DUSrglMP78Y4VV5dJi8NvusbbLYDXNHcEMIDI+E0gR0pTACJceMor9/+bSnVApd+GFVQJzhQAFu8CSkgA9+uijUFZWBpmZmTBjxgz47rvvbN3ulVdeYR6Pk08+WfX78847j/2e/zrmmGMc75cnicpfoT4gmQCFbYLmCVBo+Yu6LtAUF07ImemIAurM2VhtPa3ebA6YHgHCePf5/wfw4qkAzRXSyv2izwH2PT9kU74LzCq4LGHBKUDk/0GUlkRGgILjMPQJEJqIsezmxW49JJikKCQo6JjDMhiqDdSEaJgEjR2Iu5bZM0BHYoR2EIJIoM86dtrQkFDHn3/MmCHVyawM5u8BqNsaRQKkToPGjq/fPPMt3P3BWtZFdPSkATD/ytkwbaj+OcqdcRhB9buuWJp0bwZsFad1s9E8sGbZH2SmABU4IEDr9kjnwu/942x3gjXV7ob+ngbwI9Et0SiYZITGEphORy6GIuIMR5xn9vTXMgF2UAJzVwFK4hLYq6++Ctdccw3cfvvtsGzZMpg6dSocffTRUFkpt+YZYOvWrXDdddfBwQcfrPt3JDy7d+9Wvl5++WXnO5eWfAQoqAC1slUGXbgdl6l4BciB/O4GZo8JtiaHZYJWFCDNh6tyLcBThwEseVT6eb8LAS76AmDgFN37oTBEvgvM8RiMhOkCqwcfSCu1jkAaDC+JbMgv5cpsb9OfB4YnbSRd0j4MNO2aSQQoc8HWV0Ot7P/B9zrEKM6Xhrcusu//QeBVkcpgdn1AYZigkbRhThNfEgtrVp8dHxAmxWMQJpYBo+Dz4ktg81ftgWMeWgRfb6xh3iDMGHr87Oks0DJawEWUMhAV346B8rR0i0WcT8kCslKA3PEArdsjLW5+IAKEKqMFIfDK6k5deqlU7eBRPBbAkyLdBzWJaHDpHEkFemnJ9qBCh744GynQrozB6A1dYA888ABcdNFFcP7558PEiRPh8ccfh+zsbHjmmWcMb9PT0wO//vWv4Y477oCRI/VXHRkZGTBw4EDlq7AwjIt4MipA8lBU9ACR+oOtho7bt1UEKDqrKyPgYFQ8YW+pDp1sb0fyDJkDhiuY754CeHKOlMOCJ/azXgU4/u8A6cbeAf0usNSk7QLL8bQpKdA0Oy5cYA4QXs+r/D7DEpiSAZTABmh+2CMSHjx2lmyu0e8AQ6RmSHk3iD0r7XWARRKIGIYJGi/AvOcv7IBAOwSI/D+obkWB5JK6/MjnG+B3Ly5lyuKUwfnw/h8OYhlDjtKtw1WAyOiPGGpNgPiFkpECZCdWwxEBqpAIUCUUSoQGc5l2fm96m6x6KTCxLkciMiHHefEY3UBEAvqAxpTkMKXxxSWy6oNBjDjzDn2jGk9l9EpgBcnZBdbZ2QlLly6FI444IrhDXi/7+ZtvjCW8O++8E0pKSuCCCy4w3GbBggVsm3HjxsGll14KNTXGH+KOjg5obGxUfTFkhBcUlygeoLD9P9qVrkEJLFrAD/4+wwqsy3NGJmjeA9TTLRmdP7gOoLsdYNThAJd+AzDOuiSqF4SYdCZoLg16iEfqcmr3ZEXsZcKMJXx9lfKA5iKJxvFkMEDzz2fWKKksOG+5tOLN12YA6X027BqgwzVChxGEqP3MO+4A0xKgpoqYt8BrFSBUtJHroPfkzUtnwcj+sVmc4gWa5oFt8A+G/H7qoEcjELEhBV4LWlCZfQ7Jf2ZFgNCfuKM2OMvu51TZwLz9W9Pb5TdulPaxQFaNtFCM0KGdYBSI+jtZBXrmq61S0wqVv3DRY+KLozEYrjTQ8KG9eL5PFgJUXV3N1JwBA6STNAF/3rNnj+5tvvrqK3j66afhqaeeMrxfLH+98MIL8Nlnn8Hf/vY3WLhwIRx77LHssfRwzz33QH5+vvI1dOjQpC2BDS+SSFtlU4eSBxTWQRZHBYgvSYRnguba4Dd8FDQ6H/NXgF+/AZCrPt6MwHeB2TlhJSRYGrR0YR/hkT5TXanuEHs01ioECEs13GgS1RwwTcBkomLOWOl1WrLFRAHSfjawfGrHAB2SCG3TCB1GEKKWADkeg0HoJ6vrn9wG8P3Tul6QaHaA8enOSOJeuvAAuPGY8cqMrFgAlZxdHon0LPZPtK1YKAqQwTgMWlC5kQO0XlZ/CF93jrHlAxrQLuX4dBdPNNhAfyQGj5OmlbKmFTznvrF0p63yFx+E6KoJ2mRRnLAlMCdoamqC3/zmN4z8FJt0sZx55plw0kknwZQpU5hB+r333oPvv/+eqUJ6uPnmm6GhoUH52rFjR9INQuVXDYXyymHpttoIFCBrE3Q0MWesyTwXExM0mj7Jw8GIH5UpJp8GcMCljmT64AmoO3lN0JwReqRHUjYCLoV7YmlFyQFCyZ0rSSZbCYw/5ug6bzg9nf9sOCl/sTsdHjRCm1xYFMN+V0v8FKCDrgEYdRhAdxvA+9cAvPIrgJbqmHWAIS44eAQ8dOY0ZnSeOSr2RnossX2WdTT8vvMKeKDn9NBkcAP4lCygHoskaGsPEC7AjNrpef8PlgYRn7TIatzOH4wjDPx+GNIlqTUpAw066AxGYmizmrARBoEt8T10PJh0gGECdbWbJTBcgOActDB8QHElQEhiUlJSoKJCLbHiz+jb0WLTpk3M/HziiSdCamoq+0KlZ968eex7/Lse0CeEj7VxoyT56fmF8vLyVF/JWgLjO8G+31oXPgHiR2HEQQGaVJoHRb40xyZoNNfhBQzlckYE6SKjzbmwAXUQYpKaoHkC5JUUIK9LxB4vrF2QCh0pvhAjtGSCTp4SGAWJjpA9dKYEiP9s2O0A0zNCW5XB6PVEM6o2mNQCxa54gIoAfv0mwNH3SArqug8AHpslRUjEqASGC4650waHxhHEEDm5ufCufxakZBfZNpPTlHdDBUg+n9hRgJD7NJuEKhIBwhR99CxtCpRCd0aBRFwpqFOL+q0s3BEbInylBiUwOmdWrzMtLZ25/1D2Wdle2wo7t6y17ADDEMhOOb3bVlhtFFvh40qA0tPTYfr06axURfD7/eznmTNDp+2OHz8eVq5cCcuXL1e+UOk59NBD2fdK6UqDnTt3Mg/QoEEOpXhilUnqA9pY2RxeCGICKEBYXz5Q9mQ4KYFRCGJhdro0gZpWL2aTui08QPhhpa6FpDNBcwRohGc3+z8t2x0CRKWVZm9eiA9IrQAlBwHSll7zs9LdV4CcGKH5EESHZl9+0RPRjCxUTGdeJkVFoNcJoyMwQgKjJLrapDDIKCpAiQBKK3aiVvgsFCA7TRWYbE3lvgZ5Np0e1sot8OMG5sKo/jkswLeqcG/TMlhn+Sr2/8ZAKfTPM7jO5Q+TroGoVtYaDz9FW8B5s8rY97W7Nlp3gMnlL4wLcM1SEGYnWNxLYNgCjyWt559/HtasWcMMyy0tLawrDHHOOeewEhUCc4ImT56s+iooKIDc3Fz2PRKq5uZmuP7662HJkiVMLUIyNXfuXBg9ejRrr+/tXWCIYZop32EpQKxM4ombAoQ4SPZkOEmCrm7iWuDxBE0fXG3Qlw3kpKcqE+8pcj8pCRAOJZRb4RFZvsha4LWllXoIJUCNrR0sByiZCZBxCUx+vqmZzgzQTkdiKCGIzjtY+UWPK1PS0et08QKA/S6SfsYoiccOlBoLWIq68Yo/2UFZNU4IkFkXGC6oaBK6z4IAWPmAsJxEChAmNI8qkc79GzImmxKg9l0SAVofGKYo3brklxaOBkZowrkzy1g0QVHnbusxGEpSv4uz28LMAoo7ATrjjDPg/vvvh9tuuw2mTZvGlJz58+crxujt27ezHB+7wJLaTz/9xJShsWPHsk4xVJm+/PJLVupyBJ3xD8mkAEVEgPDgpxN9HBQgBHXlICqb2vUPdo0xU/XhqloneVPwAiKrIE5VKApiI2M1RgokHTTPPTvXnfeTlIVqf45ascDPYXsNpHt6IIAkWu5ESwbMGFmkrLotTdADbCZAa0GqEZZnzYzQYYQg6n3mXRsSignIx98vRUhghxgtLvBil5KECwOHBCgkV8xOF5hODhBfFrPqKuV9QHrATt+61i4mEI4ZkMMUIMT3ftkIveNbXfO6f49EaHaml5lHCdgwQiMwi+ms/Uqh1FNj6QFyNQMowoGoCXHUXnHFFexLD0bGZcJzzz2n+jkrKws++ugjd3ZMGw6VZB6giAgQomiU5FOIUn3fiY9h+bZ6GDGwn/pgR2kWV6BcNL0yBgOfM31oUf0JMy8EV0f86ivpusB0urAysjkPi1vjMDxBBQiN6DkdlQAZAH5fCaSEQxLiBHx/Dx9fAh+u2gNjBxosgKjcM0I/hNUSWB5AUojlpLXvAkz+hWshiISyYh8LQxxamO3+kFCMkMAoibcvBdj0mXMfVJIBx/Ow/x203pspQGSAzkj1SmV6E1ilQZP6U9bPx95nIkALGofAtRjR0FIl+bT6qbN+0mqkEMSqrNHmT8SGEZpw2dBtkLasB5oCWbCpPgum5ccgAyhCBSgJz+YxRJKWwFxRgBC/ehWgaY+pnBkrrK9s0inPBaROMBUB4gahkmwbhgFa3QofzNhI5i4wt49rIkBVPTnSmUQmQFIGkKReePKTowOMx72n7QWXHzoaJstdNSHY+zcAxePC8/8gkIzvewHAgrsBvnoQYNKp+gQ9jBBEfvHw3u8PDh3l4RYwSgIjJXDopnaSeC/DadOHwKiSHKXLKmIFyIYB2m4JjAjQuAESWScCtL6mEwIj9gHPjm+kMhhPgLo7IKtJGl/SkCcrRUYwmQqvRfGP/2L/v9xzGCxbtBUe/02/6I/BiHAgatxLYAkNl9qFYw1k1rnchyvsWmtOCcCgvSARsKFCMnSHlOc0BzwO+FNIn6IAhU+AtBcQ6u5IagLk0nGNagmOC9GGIfIZQN4k8v8QsOxpSH5oTtbwmZZDMU2x/0WSwXTPTwCbPndtEjwPNMWG3QFmB/g5HD7LcYdasgFVGpx95URJM1OAnKTK0/mn3oAArSUCJKuVgwuzWAkXh0k3lUzX9wFVrQNvoAcaAtmQkl9qTwHCeW8d3DlYCwxd3L4YAt40eLr7WPho9R6lCceQALnVAZasXWAJjyQlQFjTHV4sqUDYCh7L4LBoYQOvAJmkQVMJTFKAqAU+/BWqdtBrUipAWg+Oi8c1GmzrKAtIViykDjDZC5CEBCgmQFVn+nnS91/9Q3+b1vA9QALxhc+kC8zOIFS7E+GDBmjpM4ht+iNkC8RW3176k+HlheHawDAozrUgyL5+wfNHldziroevH2T/eaaeCVMmTGC2oycX6XeOkUpP3XV92gSd0EjSEhjvAwq7/JVgwFRrFrVuwfhJARqY1grQvCfsFngC3yGBHWFYt086oAdHToN2+7hGhUFfAUq+DrCYA9vLsYNq65cAO5e66gESiC/McoBaSQGy0VBhVgJDrx2lQJMChKBOsBUeuUOxZiNAszQGh0G2BqzzD7Vn7FYmwxv4gHCoKmZEoS3hwCvZuBLEWz/ugj0NXPNKNEtgydoGn9BI0hwg3gfUWwgQhoGpymAGjJ8UoMGdcj4J+pciCP7jS2C+9NSoD1+MiRHaRQUIO8Hq9AgQ0BgMQYAMgcMi9zpD+v7rf7jqARKIL3ymCpDzEpgeAdpW08JKXZinwze+kA9oTb03WP7HbjCCTGTWBYbas0dYGaG/fkj6f8IJbIDq9OGFsH9ZEWv1f/orOSgzQbvABAHqpQoQTrdGTCrtPfV5CvxiUDxAjeqIdZoE37opYv+PtgSWlBlAej4gF0e8MAUIjD1AQgGywIFXSv+veQ+gar36b0IBSlrY8QA5MUHrtcGT+jOmJFeVUE0EaBN6cIbOCPUBoWKD51P/UKlb1gpmRuj6HQArX5e+P/Bq5dekAr307faQEEcaVl0UFQ+QUICgr3uAEIeOL4EvbziUDQ/sLaB6t9EBjysrXBEhchrWu0OAOAUoKQ3QBH4ArJsKUD6nAOHqq6cbGlo7BQGyi/7jAMYdL3U0LpZX0gShACUtzLvAyAMUWQlMa4AOIUBVLQDDZqp9QJgt1biLfbueKUB2SmATjRWgbx4F8HcDjJgNMEQ2XQPAIeP6M18SPtf/LJE6zgiiCyxZ4GBwZiJiaFG27dk1yYB1/NRjnTRoWlng6iutWlrlRNqiqy2BJS1UJTD3SrvSQFQiVBhLUA8dzXXg83Qk1ST4uOIgeeW84lWABunixFykFIQoFKCkVYBaTXKAbJXAso0JkNYATRjZX/p8oxreWLKv9EvMc+tsVdSfXYFiaIJsVdaaIVjauQegtRqguVJN0Jc9L31/4FWqm6BV4HdzJBXo2a+3Kv7Nts4eaJO/j04OkCiBCfRSWClAlAJdjB8s+YMeuQIUPEnZWbElRSeYi6VdHIfRAynQQCQIy2BNUnJ7W2o+QLo6k0pAB0P3Axh+EIC/C2DJv4LEPtATURu8QAIoQJ09rDSv2wZvY0FlpgDR+XCsnAHEPzaNqdnYiSn4pZJKs2upYoDG8pdtEoKfYQr/5EdifPckQFcrwMC9AEYdFnKzE/YaBEMKs1jw4es/7FCdo9NTvO521NL1AINxu0KN10YQBEggaVDZ1AF1snyqR4Cq5Dlg47PrATqbALxpzJTnmgeo1yhALnqA5HEYNTQOo7UGUpslAtSeWeLa4/R6HCSvoJc+J62sqfyVlg2QFsUsH4GoKkDd/gB09khleUKLgzb4As4D5MdOEBmoqGytadFVgHgVSCqDHRAsg8kG6PWBIYxc2Y5I0Y7E6GwB+PbxoIKp0xyC+UkXz5aI0xOLNkN3T3CoNBIvVxtKWEVAvr8OTWSKCQQBEkgKDCnKVNW99UzQtLqYkrpT+kXx2PBmNRmVwDJ6AQHCAZ4uzm3C1we7UIJZQDWQ0VbBvu30OZ+/1mcx+ghptlhnM8D3TwsDdJKDH5mj9QEFTdAptj2IyH2auXIadsTi7zDnTa/TV9cHhKndso+HGaBzHJSgtD6gZS9IJdrCEQAT5xre7PTpks9oZ10bvL9ytzIGw9UQRItwXNObubsXAgLRwZgS6eBeR51gOgoQTYIf49kR8QgMPRN0UpfA0GyLZbCh+7t6t7iKwzBEPgsou10iQD05wv9jG7gaJi8Qrqwby6Xvs0X5KxmB3ktcGOh1gtHPdhZUmD5N2WN8NxV1xKIBWk9JIQK0uao5qADt+E6xBqwLDIN+dvw/WgKEClBPF8DiR6SfD/yDlIxugKz0FDhvVhn7/rEFm6C6iUIQXSZAYXaCCQIkkBQYO8CnNkKTCVrHAzS8a6sr/h9tCSwpB6Hyvp8rfwL4zduu3/WAvAyoDwRLYHldslFSdIA5w8STpUGpaDZd/E/pd0IBSlr4DLKAnJigjXxA1AI/fqD+YOOgAtQsNYJg2Rt9ZR0N4PekwqZAKfR3QoComQTToH96DaBxJ4CvBGDqryxves7MMhb6iOo9hiO63gGm7QTTTAcwgyBAAkmBMQPyNCWw0FEYlAE0sEMO33JhSCOu4tCwl/QlMAR6SUxWa+GCKUDcOIzC7mr2bWrBENcfq1cDS5Ozfq8OrhMt8L0uDdqJCdqIABm1wGvToDFBvyvgkYz2Mmozh0EXpDorQ6EJGsvnaHr+9PZgkrkNfxp2sv1qhjRQe/GmGvfHYBCEAiTQWzG2RJ5yvKdJ6qrQK4E1d0IadEN+y9aIR2AQUF6mTjA70fV9EQO4NGh/SzX0D0gnuYwiQYAcY++z1WNLhAKUtPAZKEBBE3RK2ARonQUBwuYENGKjCXt7bWvQBwQAO9NHsP+LnShAuHDCMjp7AlWSAr/vb23f/IKDRkJaSrBU57oHCCEIkEBvRVmxj32AMFgLDXXKwY6m0Z5uRQEa6SkHb6Bb+oDmS62ebpXBspNdAYoSsOWWFKCe5moYIIcgZhe78/r3KeCE+QN+F/xZKEDJnwbdoe8BstsGriVA2AmLHbF6LfD8wk2VCE0+IPQFeYeHR0JKOEUdyQ+dg23mhZ2y92Dl56h4gGgemCiBCfQ2pKV4lQ80W/2QB4g74DEIcRwZoFH9canNMlc+Adnp2uiL4NOgAw27oMgjzWxLEyWw8LDfhcG0bqEA9YosIN0SWJgEiMpfQ4uyTEnUKL4VfvB0afAuTl2RM4D6OS1DUVNJSgbAAZc6uy0AXDx7lHJKjo4JmtKgBQES6IWgvAtmhE5NlzJSEO0N0NntZyeI8d4drhmgCUdPGgAluRkwfZi4GBnJ7dQFlla7gf3fBhmOVogCHDD48PDbpK49nYA5geSdB9bR3cOGhDohQHkaAkSdsONkX6QRVEZoTH/f51ym4nzZKWWj9c91SELGHy/Facy5Xj1b0CZGl+TABQeOgGFF2bBfWVFClMCEpi+QNBjHOh7Kg0ZoVIHQlNfRqARsjfPudM0ATbjskNFw6RxcvfSesSJul8AoB8iD5UdU47zFMES8XuFjxiXSl0DSwkceIC4HiPw/0t/tKcoFmnEY1Ak7bqB5ovtIngAhTniA/bf9tvlYrAbHChAaoa9dC5HglhMmsq+oQHiABPqEAqSTBUQdYBOioAAhBPkxBuaJNHrUq9H6VM7IKyDQl7vAOAWIyl+Y7YNJyeGUwIIGaAsFSO4EQw8QjePA2WRUkiu2Mwk+mSDa4AV6M8bKBGhzVQsrefFp0EiAcqAVSqHKtRBEAQehbzmF0IPttjKa0sUYDIG+DcoN4z1ATg3QPAHCcRhIZNZXNBuOwOBR1s/HPDeN7d2sQ5YfGI0EzNfbulqFAiTQm1Ganwm5mamstXNzdbPqgMcP9liPXP7C4X9igGRMUVLg46bCA7RmcsNXBQT6IPS6wJwaoLUKEHbAYpAidsSOKJYUHrMU6aGF2cFEaMwxlJVybIH39DZVWycbzgqCAAkkDfADO05u+2QysKYEphighfoT104wRGe2IEACfRs+HQWo2cEgVC0Bqm/tUspfaHDGzlgrqDrBOAXI0RywZAG1wYsuMIHeCgr+Wsu3wnc0siF74zzbXQtAFHCGgXlcGrSYAyYgoJsE7WQQqp4CRAZoq/KXbicYl5bvKAQxWUAL4jZRAhPo9UZojQLUxClAfGCXQOw6wTgFyCPmgAn0cfh0FaBux3MFFQ9Qexes2d1oywBNGFWiJkA1MgGKShJzvKHEbqhzl8wgCJBAUoE++BIBCg5ExZWNEoIoSmAxxwBMg+YIUEpBMPVVQKAvQi8HKKgA2SdAlAOEjVxLt9VFqABJJTBHk+CTBZgL5w0Or7YDQYAEkgrkAdpV3wZtKbLptr0B/I27ocDTAn5PCkCxPLNGIC5ZQF2BFMgocB6UJiDQK5OguewfUoPszgEjMzN2bSF2N7SbzgDTYqTsAULzdHtXT+8ugXk8jsNXBQESSCrgZGG82CJ2t8sf4vYGKGqREog780bYmlAsEL006AoohILsXniCFRCIUAGiEpgTEzRfBkNgJyydA63Qz5fObovq0Zbqlt5tgkYIAiTQ20EDALe2SCeRQEcjDGrfIn0vDNBxmwhPBGhPoEh1whYQ6IvQmwUWTgmMT4MmFdxuC7s0FJU6wZp7twLEd4LZhCBAAkkHqn9vapRWWP62Bhgrd4CllU6O6771VaSnemFF1v7wSc8+8GT38YIACfR56OUAuaEA2S1/EYJT4VtYt2yvNUGHoQCJWWACSQc6AayR/IAAbfUwTl4QpQ4UBCheyMwvgYvKr2PfPyoI0P+3dyfAUVTdAsdP9pAdjNkwEMMSRBNAkAgIbggIhfIARaEQUEEFsRS/UtxAFIWi0A8XlCcu4FKCWkhZorigKQUREIziQhSEQpQkBIQsPBJI+tW9YYaZkMTMMEvP9P9X1Sbd09P23ISZk3vPuRcWF3uy0qv6RJ2cqK3TS1/YJ0J0cRZmxwCopQnQDSvBfiupkH+O1gR3D1A0Q2CwSAC0vax+P7SmQjqF/FW/QwWY39jyEtSbe0smaQOsMA+QcvR4bYMkaNf6HmyVYK6UwDfsAdqy55DOBVKjZ61jgrUHiCEwBLmOKXF6/al9x+r/EYcYtRIVclyOhUSJJGX5+/YsPRu0wvAXIBIZFirhoSFOlWAeGQI7mQPZUrYcoNKK+vyfNjGR+v0zKNEDhGAXFR6m18H5P4kSQ5W9n1QcmSUSyq+0PyvBGv61CliVSkBuWAnmbhK0LQBSvayqEtYVmW1i9NphNkE7/KUQAME6w2Ahciz81F9DB2M7+vWerC4jqVVwJ1gCZzgXUJUba4HZytndyf9R1HB0+7NOLZwa1P8+W7k2BEYSNAJSl9R4WSP7pUpipJUc1scqEzv7+7YsbdD5aTIu/x8Z3o1lMAClYQ9QpZtJ0ENz0+WX/RUy5qJMt+4jOzlWdpbWzwZND5DJeoAWL14sWVlZEh0dLfn5+bJ58+YWPW/FihW6m3HEiBFOxw3DkFmzZkl6erq0atVKBg4cKL//Xj9RHoJD55N/CR2uq+91UGqSmQPIn1S3/hP/kysXZ5/l71sBTDYX0An9uWSvAnO1ByguSuaNzJXuma71cDSsBAv6HqDoAAuAVq5cKTNmzJDZs2fLtm3bpFu3bjJ48GApLS1t9nl79uyR//znP9K/f//THluwYIE8++yzsmTJEtm0aZPExsbqax47Vj+NOAKfrSv4wPFTM6KGsggqABP2AKnqr5raOjlRZ7gVAJ0pWyVY8PcAJQVWAPT000/L5MmTZdKkSdK1a1cdtMTExMirr77a5HNqa2tl3LhxMmfOHMnOznZ6TEXZixYtkocffliuvfZaycvLk9dff13+/vtvWb16tQ9eEXwhs3WMfnM5YsTo/QNGgiSczdALAPOIta0IX11rz/9xZwjsTNkqwYJ6GYxAC4Bqampk69ateojKfkOhoXp/48aNTT7vsccek5SUFLnllltOe2z37t1SXFzsdM3ExEQ9tNbcNRFYQkNDpFNqvJSfDICK6jLtiYIAYAYxJ3t6VA6QbfgrOiJUT4roS9mW6QFKDJwk6LKyMt2bk5qa6nRc7e/YsaPR56xfv15eeeUVKSwsbPRxFfzYrtHwmrbHGqqurtabTXl5ucuvBf5JhC7bX/8L/4uRJXnxQfwPG0DAiXUYAqt0swTeE1QZvSqhV6vJ2+brCkqBFAC5qqKiQsaPHy9Lly6V5ORkj1133rx5ejgNgVcK/78nBslxCZd3jKtksh/eWACgKTEnh8BU74+tB8h2zNeeuq6b/LK/XLqmuzaTdEAJjxTJu0FElrbsdPEjFcSEhYVJSUmJ03G1n5aWdtr5u3bt0snPw4cPtx+rq6vTX8PDw6WoqMj+PHUNVQXmeM3u3bs3eh8PPPCATsR27AHKzHSv3BC+TYQukTby3xOjJSMxusUrJAOAL8RGnd4D5OsEaJu+HZP1FvSGLWxxAOTXHKDIyEjp2bOnrFu3zimgUft9+vQ57fwuXbrI9u3b9fCXbbvmmmvk8ssv19+roOXcc8/VQZDjNVVAo6rBGrumEhUVJQkJCU4bzM9xVWRVJgoAZu0Bsq0DFuewRhj8y+9jBqrnZcKECdKrVy/p3bu3ruCqqqrSVWHKTTfdJG3bttXDVGqeoAsucF7tOympPuvb8fjdd98tc+fOlU6dOumA6JFHHpGMjIzT5gtCYFNBj0roK6usDu7KBgAByUw9QDid338SY8aMkQMHDuiJC1WSshqmWrt2rT2Jee/evboyzBX33XefDqKmTJkihw8flksuuURfUwVQCC45aXFStrOaHiAA5u0BcqgCIwAyD1P8JO688069NaagoKDZ5y5btuy0YyoXRJXKqw3BLe+cJNmw86Cc0/rUjNAAYKoqMD0PkHvLYCDIAyDAXbcP6KAnRRyWeyrhHQDMNg9QpZsLocJ7+EkgoCXGRMjY/Hb+vg0AaHYeILUemL/mAYJJl8IAACDYq8BIgjYfAiAAALxcBUYStPkQAAEA4OUqMHsPEEnQpkEABACAF3uADEPkYGXNyWP0AJkFARAAAF4QHX6qt6e0on7BbZKgzYMACAAALwgNDZGYk0Neh6roATIbAiAAALyk4ervrAVmHgRAAAB4OQ/o1D49QGZBAAQAgI96gBruw38IgAAA8JKGZe+UwZsHARAAAF5eD0yJjgiV8DA+ds2CnwQAAF7i2ONDCby5EAABAOAljjk/JECbCwEQAAA+qAIjAdpcCIAAAPASx6CHOYDMhQAIAAAf5AAxBGYuBEAAAPigCowAyFwIgAAA8EUVGDlApkIABACAl9ADZF4EQAAA+CQHiCRoMyEAAgDAS5gHyLwIgAAA8BLHXh8CIHMhAAIAwEuYB8i8CIAAAPBFDxBVYKZCAAQAgJeQA2ReBEAAAHhJDDNBmxYBEAAAXhIRFiqR4fUfteQAmQvhKAAAXjSyR1v5vbRS2p8V6+9bgQMCIAAAvGj+qDx/3wIawRAYAACwHAIgAABgOQRAAADAcgiAAACA5RAAAQAAyzFFALR48WLJysqS6Ohoyc/Pl82bNzd57qpVq6RXr16SlJQksbGx0r17d3njjTeczpk4caKEhIQ4bUOGDPHBKwEAAIHA72XwK1eulBkzZsiSJUt08LNo0SIZPHiwFBUVSUpKymnnt2nTRh566CHp0qWLREZGyocffiiTJk3S56rn2aiA57XXXrPvR0VF+ew1AQAAcwsxDMPw5w2ooOeiiy6S559/Xu/X1dVJZmamTJ8+XWbOnNmia1x44YUybNgwefzxx+09QIcPH5bVq1e7dU/l5eWSmJgoR44ckYSEBLeugTNXVVUlcXFx+vvKykrd4wcAgCc+v/06BFZTUyNbt26VgQMHnrqh0FC9v3Hjxn99vord1q1bp3uLBgwY4PRYQUGB7hXKycmRO+64Qw4ePOiV1wAAAAKPX4fAysrKpLa2VlJTU52Oq/0dO3Y0+TwV2bVt21aqq6slLCxMXnjhBbnqqquchr9Gjhwp5557ruzatUsefPBBufrqq3VQpc5vSF1HbY4RJAAACF5+zwFyR3x8vBQWFuphEdUDpHKIsrOz5bLLLtOP33DDDfZzc3NzJS8vTzp06KB7ha688srTrjdv3jyZM2eOT18DAADwH78OgSUnJ+semZKSEqfjaj8tLa3J56lhso4dO+oKsHvvvVdGjx6tg5imqOBI/b927tzZ6OMPPPCA7lWybX/++ecZvCoAAGB2fg2AVBVXz549dS+OjUqCVvt9+vRp8XXUcxyHsBrat2+fzgFKT09v9HFVIaaSpRw3AAAQvPw+BKaGryZMmKDn9undu7cug1fVP6q0Xbnpppt0vo+th0d9VeeqIS0V9Hz00Ud6HqAXX3xRP66GxdRw1qhRo3QvksoBuu+++3SPkWOZPAAAsC6/B0BjxoyRAwcOyKxZs6S4uFgPa61du9aeGL1371495GWjgqOpU6fqXp1WrVrp+YDefPNNfR1FDan9+OOPsnz5cl0Kn5GRIYMGDdIl8i2dC8g2MwDJ0P6lftY26mehEuYBAGiK7XO7JTP8+H0eIDNSwZWaiwgAAAQelct7zjnnNHsOAVATOUV///23rjZTy2i4G4WqIEr9EMgpch/t6Dm0pefQlp5BO3oObVlPhTQVFRV69Mdx9MiUQ2BmpBrt3yLHliKp2jNoR8+hLT2HtvQM2tFzaEvRM0EHzGKoAAAAvkQABAAALIcAyEtUxdns2bNZhf4M0Y6eQ1t6Dm3pGbSj59CWriMJGgAAWA49QAAAwHIIgAAAgOUQAAEAAMshAAIAAJZDAOQhhw4dknHjxukJqJKSkuSWW27RC7M2d/706dMlJydHr2nWrl07ueuuu+TIkSNiNYsXL5asrCyJjo6W/Px82bx5c7Pnv/vuu3oNOHV+bm6uXhAXrrfl0qVLpX///tK6dWu9DRw48F/b3ipc/Z20WbFihZ49fsSIEV6/x2BtS7WG47Rp0yQ9PV1XNHXu3Jl/4262pVpc3PYZo2aJvueee+TYsWM+u1/TU1VgOHNDhgwxunXrZnz77bfG119/bXTs2NG48cYbmzx/+/btxsiRI40PPvjA2Llzp7Fu3TqjU6dOxqhRowwrWbFihREZGWm8+uqrxs8//2xMnjzZSEpKMkpKSho9f8OGDUZYWJixYMEC45dffjEefvhhIyIiQren1bnalmPHjjUWL15sfP/998avv/5qTJw40UhMTDT27dtnWJmr7Wize/duo23btkb//v2Na6+91mf3G0xtWV1dbfTq1csYOnSosX79et2mBQUFRmFhoWF1rrblW2+9ZURFRemvqh0/+eQTIz093bjnnnt8fu9mRQDkAeqDWMWSW7ZssR/7+OOPjZCQEOOvv/5q8XXeeecd/Qt+/Phxwyp69+5tTJs2zb5fW1trZGRkGPPmzWv0/Ouvv94YNmyY07H8/HzjtttuM6zO1bZs6MSJE0Z8fLyxfPlyw8rcaUfVdn379jVefvllY8KECQRAbrbliy++aGRnZxs1NTU+vMvgbEt17hVXXOF0bMaMGUa/fv28fq+BgiEwD9i4caMe9urVq5f9mBpOUGuKbdq0qcXXUcNfaggtPNwaS7TV1NTI1q1bdVvZqDZT+6pNG6OOO56vDB48uMnzrcKdtmzo6NGjcvz4cWnTpo1Ylbvt+Nhjj0lKSooe+ob7bfnBBx9Inz599BBYamqqXHDBBfLkk09KbW2tWJk7bdm3b1/9HNsw2R9//KGHEocOHeqz+zY7a3zSellxcbF+83Okghj1QaIea4mysjJ5/PHHZcqUKWIV6jWrNzb1RudI7e/YsaPR56j2bOz8lrZzsHKnLRu6//779QrKDQNMK3GnHdevXy+vvPKKFBYW+ugug7ct1Yf0F198ofMp1Yf1zp07ZerUqTowV7McW5U7bTl27Fj9vEsuuUSvkH7ixAm5/fbb5cEHH/TRXZsfPUDNmDlzpk5obG5r6YdLc8rLy2XYsGHStWtXefTRRz1y74Ar5s+frxN433//fZ1giZapqKiQ8ePH64Ty5ORkf99OwKurq9N/TL700kvSs2dPGTNmjDz00EOyZMkSf99awCkoKNC9Zy+88IJs27ZNVq1aJWvWrNF/aKMePUDNuPfee2XixInNnpOdnS1paWlSWlrqdFxF26rSSz32b2+gQ4YMkfj4eP3hExERIVahPjDCwsKkpKTE6bjab6rd1HFXzrcKd9rSZuHChToA+vzzzyUvL0+szNV23LVrl+zZs0eGDx/u9CFu6wUuKiqSDh06iBW58zupKr/Ue6B6ns15552ne3jVMFBkZKRYkTtt+cgjj+jg/NZbb9X7qmK2qqpKjzKooDI0lP4PWqAZZ599ti63bm5T/yDVmLUq3VTjrTaqG1e9EapSxeZ6fgYNGqSvoca+rfaXt3rd6q+8devW2Y+pNlP7qk0bo447nq989tlnTZ5vFe60pbJgwQL9F+HatWudctisytV2VO8B27dv18Nftu2aa66Ryy+/XH+vSo+typ3fyX79+ulhL1sQqfz22286MLJq8ONuW6qcvoZBji2wZAnQk/ydhR1MZfA9evQwNm3apMs3VUm7Yxm8Ki3OycnRjytHjhzR1Uu5ubm6DH7//v32TVWUWKm0U5VqLlu2TFfTTZkyRZd2FhcX68fHjx9vzJw506kMPjw83Fi4cKEu3Z49ezZl8G625fz583XV4Xvvvef0+1dRUWFYmavt2BBVYO635d69e3Ul4p133mkUFRUZH374oZGSkmLMnTvXsDpX21K9N6q2fPvtt40//vjD+PTTT40OHTroSlrUIwDykIMHD+qAJy4uzkhISDAmTZrk9EGi5mFQ8eaXX36p99VXtd/Yps61kueee85o166d/jBWpZ5qLiWbSy+9VH+gNJwuoHPnzvr8888/31izZo0f7jrw27J9+/aN/v6pN06rc/V30hEB0Jm15TfffKP/OFQf9qok/oknnrDUH4Weaks1ncqjjz6qg57o6GgjMzPTmDp1qvHPP//46e7NJ0T9x9YbBAAAYAXkAAEAAMshAAIAAJZDAAQAACyHAAgAAFgOARAAALAcAiAAAGA5BEAAAMByCIAABDy1Zt+IESP8fRsAAgiLoQIwtZCQkGYfnz17tjzzzDOsbwTAJQRAAExt//799u9Xrlwps2bN0qus28TFxekNAFzBEBgAU0tLS7NviYmJukfI8ZgKfhoOgV122WUyffp0ufvuu6V169aSmpoqS5culaqqKpk0aZLEx8dLx44d5eOPP3b6f/30009y9dVX62uq54wfP17Kysrsj7/33nuSm5srrVq1krPOOksGDhyorwkg8BAAAQhKy5cvl+TkZNm8ebMOhu644w657rrrpG/fvrJt2zYZNGiQDnCOHj2qzz98+LBcccUV0qNHD/nuu+9k7dq1UlJSItdff729J+rGG2+Um2++WX799VcpKCiQkSNHMvQGBCgWQwUQMJYtW6Z7dVSw4kj1AKljq1evtvcA1dbWytdff6331feq90gFLK+//ro+VlxcLOnp6bJx40a5+OKLZe7cufr8Tz75xH7dffv2SWZmph5yq6yslJ49e8qePXukffv2Pn3dADyPHCAAQSkvL8/+fVhYmB6yUsNXNmqISyktLdVff/jhB/nyyy8bzSfatWuX7jG68sor9TUGDx6s90ePHq2H2AAEHobAAASliIgIp32VO+R4zFZdVldXp7+qHp7hw4dLYWGh0/b777/LgAEDdBD12Wef6byhrl27ynPPPSc5OTmye/duH78yAJ5AAAQAInLhhRfKzz//LFlZWTpB2nGLjY21B039+vWTOXPmyPfffy+RkZHy/vvv+/vWAbiBAAgARGTatGly6NAhnei8ZcsWPeyl8oFU1ZjKIdq0aZM8+eSTOkF67969smrVKjlw4ICcd955/r51AG4gBwgARCQjI0M2bNgg999/v87vqa6u1snOQ4YMkdDQUElISJCvvvpKFi1aJOXl5fqxp556SpfNAwg8VIEBAADLYQgMAABYDgEQAACwHAIgAABgOQRAAADAcgiAAACA5RAAAQAAyyEAAgAAlkMABAAALIcACAAAWA4BEAAAsBwCIAAAYDkEQAAAwHL+HxcgYYwuUYTqAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from sklearn.svm import SVC\n", "from sklearn.pipeline import make_pipeline\n", "from sklearn.preprocessing import StandardScaler\n", "from mne.decoding import SlidingEstimator, cross_val_multiscore\n", "\n", "# Create the classifier:\n", "clf = make_pipeline(StandardScaler(), SVC())\n", "\n", "# Time resolved\n", "time_decod = SlidingEstimator(clf, n_jobs=None, scoring=\"accuracy\", verbose=True)\n", "\n", "# Extract the data:\n", "data = epochs[0].get_data()\n", "\n", "# Decode faces vs. objects:\n", "cate_lbl = np.array([mapping[\"category\"][val] for val in X.to_numpy()[:, 0]])\n", "scores_category = np.mean(\n", " cross_val_multiscore(\n", " time_decod, data, cate_lbl, cv=5, n_jobs=-1, verbose=\"WARNING\"\n", " ),\n", " axis=0,\n", ")\n", "\n", "# Decode attended vs. unattended:\n", "att_lbl = np.array([mapping[\"attention\"][val] for val in X.to_numpy()[:, 1]])\n", "scores_attention = np.mean(\n", " cross_val_multiscore(\n", " time_decod, data, att_lbl, cv=5, n_jobs=-1, verbose=\"WARNING\"\n", " ),\n", " axis=0,\n", ")\n", "\n", "# Plot\n", "fig, ax = plt.subplots()\n", "ax.plot(epochs[0].times, scores_category, label=\"category\")\n", "ax.plot(epochs[0].times, scores_attention, label=\"attention\")\n", "ax.axhline(0.5, color=\"k\", linestyle=\"--\", label=\"chance\")\n", "ax.set_xlim([epochs[0].times[0], epochs[0].times[-1]])\n", "ax.set_xlabel(\"Times\")\n", "ax.set_ylabel(\"AUC\") # Area Under the Curve\n", "ax.legend()\n", "ax.axvline(0.0, color=\"k\", linestyle=\"-\")\n", "ax.set_title(\"Sensor space decoding\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 6.2. Group level analysis\n", "We simulated the data of 20 subjects, so we can investigate the evidence for decoding of the experimental manipulations at the group level. First, we need to perform the decoding on every single subject:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "from mne.stats import permutation_cluster_1samp_test, bootstrap_confidence_interval\n", "\n", "scores_category = []\n", "scores_attention = []\n", "\n", "# Loop through each subject:\n", "for epo in epochs:\n", " # Extract the data:\n", " data = epo.get_data()\n", " # Classification of category\n", " scores_category.append(\n", " np.mean(\n", " cross_val_multiscore(\n", " time_decod, data, cate_lbl, cv=5, n_jobs=-1, verbose=\"WARNING\"\n", " ),\n", " axis=0,\n", " )\n", " )\n", " # Classification of attention:\n", " scores_attention.append(\n", " np.mean(\n", " cross_val_multiscore(\n", " time_decod, data, att_lbl, cv=5, n_jobs=-1, verbose=\"WARNING\"\n", " ),\n", " axis=0,\n", " )\n", " )\n", "\n", "scores_category = np.array(scores_category)\n", "scores_attention = np.array(scores_attention)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can then apply a cluster based permutation test across subjects to find out when we have an effect:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Using a threshold of 1.729133\n", "stat_fun(H1): min=-2.063440557640801 max=13.915856477893735\n", "Running initial clustering …\n", "Found 3 clusters\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4e1b43101e3b44cf8e72c22d04e3ba4e", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | Permuting : 0/1023 [00:00" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Compute the confidence intervals:\n", "ci_low_cate, ci_up_cate = bootstrap_confidence_interval(scores_category)\n", "ci_low_att, ci_up_att = bootstrap_confidence_interval(scores_attention)\n", "\n", "fig, ax = plt.subplots()\n", "ax.plot(epochs[0].times, np.mean(scores_category, axis=0), label=\"category\", color=\"b\")\n", "ax.fill_between(epochs[0].times, ci_low_cate, ci_up_cate, alpha=0.3, color=\"b\")\n", "ax.plot(\n", " epochs[0].times[sig_mask_cate],\n", " np.ones(np.sum(sig_mask_cate)) * 0.4,\n", " marker=\"o\",\n", " linestyle=\"None\",\n", " color=\"b\",\n", ")\n", "\n", "ax.plot(\n", " epochs[0].times, np.mean(scores_attention, axis=0), label=\"attention\", color=\"g\"\n", ")\n", "ax.fill_between(epochs[0].times, ci_low_att, ci_up_att, alpha=0.3, color=\"g\")\n", "ax.plot(\n", " epochs[0].times[sig_mask_att],\n", " np.ones(np.sum(sig_mask_att)) * 0.4,\n", " marker=\"o\",\n", " linestyle=\"None\",\n", " color=\"g\",\n", ")\n", "ax.axhline(0.5, color=\"k\", linestyle=\"--\", label=\"chance\")\n", "ax.set_xlim([epochs[0].times[0], epochs[0].times[-1]])\n", "ax.set_xlabel(\"Times\")\n", "ax.set_ylabel(\"AUC\")\n", "ax.legend()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Just as one would expect, we find significant decoding in the expected time windows. This makes designing decoding analysis (or any multivariate techniques such as RSA) very easy, as one can be sure that mistakes crept in, and that the pipeline is sensitive and specific enough\n", "\n", "In the next tutorial, we will explore how to make the temporal dynamics of the multivariate signal more realistic, by adding a temporal kernel to our effect" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.0" } }, "nbformat": 4, "nbformat_minor": 2 }